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nonresonant continuum production of charged pion pairs
is studied by CMS and TOTEM experiments
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in the resonance-free region: m+,- <0.7 GeV, m_+,- > 1.8 GeV
(scattered proton pr: 0.2 GeV < (py1, p2,1) < 0.8 GeV; pion rapidities: |y| < 2)

5/15



Central exclusive production (CEP) of charged pion pairs

resonant component (Born-level) nonresonant continuum component (Born-level)

P (pa) p(p1) p(pa) RN p(p1) P (pa) IR p(p1)

ﬂ-+(p:3> \T/ \T/
Py —~ — 7 (ps) — — ()
\ —

h(f) ¥

p(ps) P (p2)

nonresonant continuum production of charged pion pairs
is studied by CMS and TOTEM experiments
in pp collisions at+/s =13 TeV in a special run (B* =90m, Li, = 4.7 pb™),
in the resonance-free region: m+,- <0.7 GeV, m_+,- > 1.8 GeV
(scattered proton pr: 0.2 GeV < (py1, p2,1) < 0.8 GeV; pion rapidities: |y| < 2)

Phys. Rev. D 109 (2024) 112013 5/15


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.112013

Central exclusive m* 1t~ production event classification

6/15



Central exclusive 1t~ production event classification

very clean pp - ptmirnp events:
2 pions measured in CMS
and 2 protons measured in TOTEM

6/15



Central exclusive 1t~ production event classification

very clean pp - ptmirnp events:
2 pions measured in CMS
and 2 protons measured in TOTEM

main background:
elastic and inelastic pileup

6/15



Central exclusive 1t~ production event classification

very clean pp - ptmirnp events:
2 pions measured in CMS
and 2 protons measured in TOTEM

main background:
elastic and inelastic pileup

background removal is based on
momentum conservation in the
transverse plane

6/15



Central exclusive 1t~ production event classification

very clean pp - ptmirnp events:
2 pions measured in CMS
and 2 protons measured in TOTEM

main background:
elastic and inelastic pileup

background removal is based on
momentum conservation in the
transverse plane

the sum of pryy of
the two protons

z px,y
2

6/15



Central exclusive 1t~ production event classification

very clean pp - ptmirnp events:
2 pions measured in CMS
and 2 protons measured in TOTEM

main background:
elastic and inelastic pileup

background removal is based on
momentum conservation in the
transverse plane

the sum of pryy of
the two protons

VS.
z px,y
2

6/15



Central exclusive 1t~ production event classification

very clean pp - ptmirnp events:
2 pions measured in CMS
and 2 protons measured in TOTEM

main background:
elastic and inelastic pileup

background removal is based on
momentum conservation in the
transverse plane

the sum of pryy of the sum of pryy of the two
the two protons protons and the two pions
VS.
2 Pxy z Pxy
2 4

6/15



[ ] + — [ ) [ ) [ ) [ )
Central exclusive Tt~ production event classification
CMS-TOTEM 4.7 pb~! (13 TeV)
VeryClean ppépT[T[pevents: 1_"" "'f I»I-I,.lllll“ '|_|||| I B B T
2 pions measured in CMS 7 : -
and 2 protons measured in TOTEM ;0'5 - ;0'5 -
. (-3 0 : - (E 0:_
main bgckgrogndf S eI ;
AJNE - N i
elastic and inelastic pileup o5k i:’_‘ @0_5__ __
7 A =) 3,_ & : B .
background removal is based on IR WSS T R W W W .
1 05 0 0.5 1 1 1 05 O 0.5 1
momentum conservation in the T.p, [GeV] o Top, [GeV]
transverse plane 1 [T T o | 1 | |“| =TT ] 1 s b T | B | l'!' "_
the sum of ppy, of the sum of ppy, of the two _0.5 :— —: _0.5 5 :
the two protons protons and the two pions % B ] %) : :
O E t O P '
S o = 0]
2 VS. g T 1 & !
pX,y Z p A B 1 W ,~: i
> - “05F 1 ~o5= =
_1 :l 1 ;‘I |‘:|J I . RN R I: —1 ) B I;:l I |:
4 085 0 0.5 1 -1 -05 O 0.5 1

£,p, [GeV] Zobx [GeV] /15



Central exclusive m* 1t~ production event classification
CMS-TOTEM 4.7 pb~! (13 TeV)
very clean pp = prmrp events: [IRaERRRERE ~ ARAsEEAAN T T
2 pions measured in CMS . ‘ MJBE -
and 2 protons measured in TOTEM ;0'5 e . 4 ;0-5;_
, , S oh S o
main background: S o B i
elastic and inelastic pileup A . i;j A b
[ . @, ] N ]
background removal is based on s ... AR P T T T
momentum conservation in the -+ _ngpx FGeV]O'5 1 - _ngp FGeV]O'S 1
transverse plane R —— 1|y| .

the sum of pqy,, of the sum of py, of the two 0.5
the two protons protons and the two pions

IIIIIIII

UBLE
:.llllllll

L 111

=
62}
858 T e

IlIlIIllI

I
k.

VS.
2 Pxy Z Pxy
2 4
_1 | ;’I|| l. L -"I’f';‘ll‘| I A

for exclusive events: Y, pxy ~ 0 3 e O 05 0 05 1

—

I

—L

| '.E"
O =
o)

£, [GeV] Iopy [GeV] i



Central exclusive 1t~ production event classification

CMS-TOTEM 4.7 pb~! (13 TeV)
Vel’y Clean pp - pT[T[p events: 1 [ TTTTTTTI " T »f““l | L E T T ] 1 [TT T T [T T I T[T T T T |
2 pions measured in CMS : B
and 2 protons measured in TOTEM =0°F L 1 =05F
. (-3- 0 (.E 0 :_
main background: = o -
elastic and inelastic pileup vfo 5 [ F i?_i r»j‘ro sk E
R @ Bl

baCkground remOval iS based On _1 R > E L 11 Ji]—pe] _-I L 111 | L1 11 | L 111 | L 11 1
. . -1 -0.5 0 0.5 1 -1 =05 0 0.5 1
momentum conservation in the ToPy [GeV] Ezpy [GeV]
tra nsve rse pla n e 1 - | B 7 I | | BANE P 1 I. I o R L} ] 1 PR | P Vel | I‘:v! II
the sum of pqy,, of the sum of py, of the two _0.5 :— —: _0.5 -
the two protons protons and the two pions %, B ] %)
O o O, &k
= 3 ~ €
2 VS. S [ 1 o [ i
Pxy Z Px,y AR 1 W i
z ; 058 7 E
. s : [ ; | <7|'|l | . 1 111 [ | : —1 JI A"s"‘""" l I’: I S
for exclusive events: )}, Pxy ~ 0 1_1 68 B 0E 9 -1 -5 0 .85 1

£,p, [GeV] Zobx [GeV] /15



[ ] + — [ ) [ ) [ ) [ )
Central exclusive Tt~ production event classification
CMS-TOTEM 4.7 pb~! (13 TeV)
Vel’y Clean pp - pT[T[p events: 1 T T T T T " T .I_,I, L E T T ] 1 [TT T T [T T I T[T T T T |
2 pions measured in CMS - " TB ]
and 2 protons measured in TOTEM ;-0'5 = 2 ;0-5 n
. (-3- 0 (.E 0 :_
main bgckgrognd: < B ;
elastic and inelastic pileup ['jo_5 B ' i?—_ 50_5 _ with TT and BB trigger configs_|
B 25.: _ elastic events cannotbe ]
) R - - detected ( tical bands)
background removal is based on 16 __ T R S RN e
momentum conservation in the - _ngpx FGGV]O"E’ 1 - _O'ggpy FGeV]O'S 1
transverse plane 1 | B 7 I | | BANE P A 153 I S SR 1 _I PR | B |'I ! !I 'l,':l',l A
the sum of pryy of the sum of pry, of the two g | _0.5
the two protons protons and the two pions %, B %J
O o O, &k
z VS. Q_: & . Q: o 1
Pxy Z p A B J &) i
- - 0.5 1 058 J
:I | || 7|'| - o [ |: = JI :—“y‘""" II’:| e I o A I |:
for exclusive events: )}, Pxy ~ 0 ‘1_1 68 B 0E 9 1-1 05 0 _05 1

£,p, [GeV] Zobx [GeV] /15



Results, d*c/dp, 1 dp, 1 dd

7/15



Results, d*c/dp, T dp, 1 dd

studied variables:

p, T and p, 1, the transverse momenta of
final state protons;

¢, the azimuthal angle between the
scattered protons;
m, the invariant mass of the pion pair;
max(t, u) squared four momentum of the
virtual meson

7/15



Results, d*c/dp, T dp, 1 dd

studied variables:

p, T and p, 1, the transverse momenta of
final state protons;

¢, the azimuthal angle between the
scattered protons;
m, the invariant mass of the pion pair;
max(t, u) squared four momentum of the
virtual meson

triple differential cross sections:
in ranges of p; v and p, , distributions of ¢,
m, and max(t, u)

7/15



Results, d*c/dp, 1 dp, 1 dd

studied variables:

p, T and p, 1, the transverse momenta of
final state protons;

¢, the azimuthal angle between the
scattered protons;
m, the invariant mass of the pion pair;
max(t, u) squared four momentum of the
virtual meson

triple differential cross sections:
in ranges of p; v and p, , distributions of ¢,
m, and max(t, u)

3 2 3 2
d’s/dp; 1dp, 100 [ub/GeV?]  d o/dpy rdp, 1d¢ [Mb/GeVT]  d o/dp; dpy dd [ub/GeV ]

T

V| 4.7

CMS-TOTEM

18

035 < m+

16 |

- < 0.65G

14
12
10

pb™' (13 TeV)

B empirical exp
Dime 1
fit

two-channel exp ]

0.45 < p; 7< 0.50 GeV

14
12
10
8
6
4
2
0
18
16
14
12
10 |
8 3
6 b
4
2
0
18
16
14
12
10
8
8
4
2
0

0 0 n
0.50 < py T < 0.55 GeV

0.55 < py 1< 0.60 GeV

m

0.25 < py 7 < 0.30 GeV 0.30 < pp 1 < 0.35 GeV

0.20 < p, 1 < 0.25 GeV

7/15



Results, d*c/dp, T dp, 1 dd

studied variables:

p, T and p, 1, the transverse momenta of
final state protons;

¢, the azimuthal angle between the
scattered protons;
m, the invariant mass of the pion pair;
max(t, u) squared four momentum of the
virtual meson

triple differential cross sections:
in ranges of p; v and p, , distributions of ¢,
m, and max(t, u)

3 2 3 2
d’s/dp; 1dp, 100 [ub/GeV?]  d o/dpy rdp, 1d¢ [Mb/GeVT]  d o/dp; dpy dd [ub/GeV ]

CMS-TOTEM  [035 < m_+ - < 0.65GeV| 4.7 pb™' (13 TeV)
T T T T T T T 18 T T T 14 T T T T T T T

16 f 12
10

B empirical exp
two-channel exp ]
Dime 1

14
12
10
8
6
4
2
0
18
16
14
12
10 |
8 3
6 b
4
2
0
18
16
14
12
10
8
8
4
2
0

0 i i 0 W] T 0 i bis
0.45 < p; 1< 0.50 GeV 0.50 < p; T < 0.55 GeV 0.55 < p; 1 < 0.60 GeV

0.30 < pp 1 < 0.35 GeV

0.25 < py 7 < 0.30 GeV

0.20 < p, 1 < 0.25 GeV

models after tuning give better descriptions but
still need for further theoretical developments

7/15



Results, d*c/dp, T dp, 1 dd

studied variables:

p, T and p, 1, the transverse momenta of
final state protons;

¢, the azimuthal angle between the
scattered protons;
m, the invariant mass of the pion pair;
max(t, u) squared four momentum of the
virtual meson

triple differential cross sections:
in ranges of p; v and p, , distributions of ¢,
m, and max(t, u)

a parabolic minimum in the distribution of
¢ is observed for the first time

3 2 3 2
d’s/dp; 1dp, 100 [ub/GeV?]  d o/dpy rdp, 1d¢ [Mb/GeVT]  d o/dp; dpy dd [ub/GeV ]

CMS-TOTEM  [035 < m_+ - < 0.65GeV| 4.7 pb™' (13 TeV)
T T T T T T T 18 T T T 14 T T T T T T T

16 f 12
10

B empirical exp
two-channel exp ]
Dime 1

14
12
10
8
6
4
2
0
18
16
14
12
10 |
8 3
6 b
4
2
0
18
16
14
12
10
8
8
4
2
0

0 i i 0 W] T 0 i bis
0.45 < p; 1< 0.50 GeV 0.50 < p; T < 0.55 GeV 0.55 < p; 1 < 0.60 GeV

0.30 < pp 1 < 0.35 GeV

0.25 < py 7 < 0.30 GeV

0.20 < p, 1 < 0.25 GeV

models after tuning give better descriptions but
still need for further theoretical developments

7/15



Results, d*c/dp, 1 dp, 1 dd
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m, the invariant mass of the pion pair;
max(t, u) squared four momentum of the
virtual meson

triple differential cross sections:
in ranges of p; v and p, , distributions of ¢,
m, and max(t, u)

a parabolic minimum in the distribution of
¢ is observed for the first time

the minimum can be interpreted as an effect
due to rescattering (absorption) corrections

Harland-Lang, Khoze, Ryskin,
Eur. Phys. J. C74 (2014) 2848
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P dynamics E)
jet-gap-jet event jet-gap-jet with intact proton event
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CMS color-singlet exchange (CSE) dijet event fractions

the fraction of dijet events produced via color-singlet exchange, fcsg, is measured
in bins of Any; = jnjett — piet2), plretz (subleading jet pr) and Ady; = |piett — piet?|
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CMS color-singlet exchange (CSE) dijet event fractions

the fraction of dijet events produced via color-singlet exchange, fcgg, is measured

in bins of Any; = [t —nlet?|, pr (subleading jet pr) and Adj; = |Pett — et
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(the latter includes soft color interaction (SCI) and/or multi-parton interaction (MPI) contributions)

results are compared with BFKL-based calculations by Royon, Marquet, Kepka (RMK)
and Ekstedt, Enberg, Ingelman, Motyka (EEIM) in NLL accuracy implemented in PYTHIA
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CMS-TOTEM CSE dijet event fractions

dominant background: uncorrelated forward || background removal based on matching between
gTOTEM

protons from pile up or beam halo activity the fractional momentum losses

and ECMS

ideally £50TEM = £EMS but CMS detector underestimates §,,
hence gM5 — E1OTEM < 0 is required

limited sample size, a measurement as a function of kinematic variables
is not possible: the fgg is extracted using the entire sample of events
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CMS-TOTEM CSE dijet event fractions

dominant background: uncorrelated forward
protons from pile up or beam halo activity

background removal based on matching between

the fractional momentum losses §,°"*M and g5M>

hence §5M° —

ideally £50TEM = £EMS but CMS detector underestimates §,,
O TEM < 0 is required

limited sample size, a measurement as a function of kinematic variables
is not possible: the fgg is extracted using the entire sample of events
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matching between §°TEM and £5M5 to suppress

pileup and beam halo events: §5M° — gJOTEM < ¢

P LRG this is the first measurement of hard diffraction

h p with a measured intact proton at LHC

L
- o

p

Schematic diagram of single-diffractive dijet hard diffractive processes are described in terms
production with hard gg — dijet scatteing process; of a convolution of diffractive parton distribution

the qq and gq initial states also contribute functions (dPDFs, measured at HERA) and hard
scattering cross sections (calculated in pQCD)

Eur. Phys. J. C 80 (2020) 1164
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SD dijet results
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POMWIG (with (S?) = 7.4%) and PYTHIA8 DG MC predictions show good agreement with the data
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POMWIG (with (S?) = 7.4%) and PYTHIA8 DG MC predictions show good agreement with the data

the t distribution up to about 0.4 GeV? is well described by an exponential function
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the t distribution up to about 0.4 GeV? is well described by an exponential function

as compared to the Tevatron CDF results, SD dijet production is further suppressed at the LHC
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Summary

various diffractive processes measured jointly by CMS and TOTEM in pp collisions

first time observation of a parabolic minimum in the distribution of the azimuthal
angle difference of the final state protons in central exclusive production;

various physical parameters related to pomeron physics extracted/tuned
good agreement between BFKL and jet-gap-jet measurements

first measurement of hard diffraction with a measured intact proton at LHC
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BFKL tests with jet-gap-jet events

Baldenegro, Gonzalez Duran, Klasen,
Royon, Salomon, JHEP 2022, 250
CMS @ 13TeV

Full BFKL (5=0.03+0.01)
— Strict Gap (5=0.35+0.09)
- == Exp. Gap (5=0.08+0.02)
Full BFKL CP5 (5=0.02+0.01) g
mmmm Strict Gap CP5 (5=6.59+1.86) /
== = Exp. Gap CP5 (5=1.11£0.22)
® CMS

2.00

1.75 4

1.50 4

1.25 4

1.00 &

' od
“
Eﬁ,w,

0.75 - A T g o
____________ _ -

0.50 ~

fese [%]

0.25 ~

0.00 T T T T
3 4 5 6 7 8
Anjets

good agreement between BFKL and data but the
gap definition is different in theory and data
(theory: no particles at all; experiment: no particles
with pt>200 MeV; explanation: too much ISR
generated by PYTHIA)

100 -

(0]

}312

ay.

ratio
o =

Colferai, Deganutti, Raben,

1o}

oW

ot

Royon, JHEP 2023, 91
"~ n S —ELL
{Sariiiies S UL I R
R e = {1219)
IR
BEEE ) — - ——
R
I T
:
SILIEA RN j
3 A 5 6 7 8 9
7 }912

the full BFKL NLL prediction for the jet-gap-jet
cross section is below the BFKL LL estimate in the
whole rapidity separation range (15-20% decrease)




	1. dia
	2. dia
	3. dia
	4. dia
	5. dia
	6. dia
	7. dia
	8. dia
	9. dia
	10. dia
	11. dia
	12. dia
	13. dia
	14. dia
	15. dia
	16. dia
	17. dia
	18. dia
	19. dia
	20. dia
	21. dia
	22. dia
	23. dia
	24. dia
	25. dia
	26. dia
	27. dia
	28. dia
	29. dia
	30. dia
	31. dia
	32. dia
	33. dia
	34. dia
	35. dia
	36. dia
	37. dia
	38. dia
	39. dia
	40. dia
	41. dia
	42. dia
	43. dia
	44. dia
	45. dia
	46. dia
	47. dia
	48. dia
	49. dia
	50. dia
	51. dia
	52. dia
	53. dia
	54. dia
	55. dia
	56. dia
	57. dia
	58. dia
	59. dia
	60. dia
	61. dia
	62. dia
	63. dia
	64. dia
	65. dia
	66. dia
	67. dia
	68. dia
	69. dia
	70. dia
	71. dia
	72. dia
	73. dia
	74. dia
	75. dia
	76. dia
	77. dia
	78. dia
	79. dia
	80. dia
	81. dia
	82. dia
	83. dia
	84. dia
	85. dia
	86. dia
	87. dia
	88. dia
	89. dia
	90. dia
	91. dia
	92. dia
	93. dia
	94. dia
	95. dia
	96. dia
	97. dia
	98. dia
	99. dia
	100. dia
	101. dia
	102. dia
	103. dia
	104. dia
	105. dia

