The chiral transition in a 20 fm³ box

Szabolcs Borsányi

Uuppertal-Budapest collaboration. Z. Fodor, J. N. Günther, P. Parotto (Torino) A. Pásztor (Budapest), L. Pirelli K. K. Szabó, C. H. Wong

Bergische Universität Wuppertal

Zimanyi School 2024

The full equation of state

Adding QCD to the free light particles and the electroweak theory: number of effective degrees of freedom:

2 / 27

QCD phase diagram

by source of information

QCD phase diagram

Compiled by [Vovchenko et al 2408.06473] Lattice result on the chiral transition line:[Wuppertal-Budapest PRL 125 (2020) 052001] What can Lattice QCD add to this phase diagram?

QCD phase diagram

analytical continuation of lattice data

Clausius Clapeyron equation

Entropy and baryon susceptibility

Taylor coefficients

Taylor coefficients of the pressure

$$\frac{p(\mu_B)}{T^4} = \frac{p(0)}{T^4} + \frac{1}{2!} \frac{\mu_B^2}{T^2} \chi_2^B(T) + \frac{1}{4!} \frac{\mu_B^4}{T^4} \chi_4^B(T) + \frac{1}{6!} \frac{\mu_B^6}{T^6} \chi_6^B(T) + \dots$$

 These Taylor coefficients are equal to the Grand Canonical fluctuations

$$\chi_{2}^{B}(T) = \langle B^{2} \rangle - \langle B \rangle^{2} = \frac{1}{VT} \frac{\partial^{2} \log Z(V, T, \mu_{B}, \mu_{Q}, \mu_{S})}{\partial \mu_{B}^{2}}$$

Higher fluctuations are the Taylor coefficients of lower fluctuations

$$\chi_2^B(\mu_B) = \chi_2^B(\mu_B = 0) + \frac{1}{2!} \frac{\mu_B^2}{T^2} \chi_4^B(\mu_B = 0) + \frac{1}{4!} \frac{\mu_B^4}{T^4} \chi_6^B(\mu_B = 0) + \dots$$

- Taylor coefficients can be used to reveal analytic structure of the thermodynamic potential
 - Repulsive interactions beyond ideal HRG
 - Searching the critical end point
- Hints for chiral O(4) universality

Coefficients below and above the transition region

 Low temperature coefficients: *Hadron Resonance Gas model estimates lattice data well* High temperature coefficients:

Improved perturbation theory describes lattice data well

HTL results: [Haque et al 1309.3968,1402.6907] Lattice results: [Wuppertal-Budapest: 1507.04627] [BNL-Bielefeld: 1507.06637]

How to calculate the χ coefficients?

 $\chi_{800}^{uds} = 79 \text{ terms} \dots$

A, B, C,... are defined as $[\det M(\mu_u)]^{1/4} = [\det M(0)]^{1/4} \exp \left(1 + A_u \mu_u + \frac{B_u}{2!} \mu_u^2 + \frac{C_u}{3!} \mu_u^3 + \dots\right)$ Data analysis uses computer generated code.

Sign problem in the Taylor coefficients

High order coefficients in a LT = 2 box

4Hex continuum result [Phys.Rev.D 110 (2024) 1, L011501]

Comparison with literature

4stout data (imaginary μ_B , $48^3 \times 12$ lattice) : [Wuppertal-Budapest, 1805.04445] HISQ data: ($\mu_B = 0$, $32^3 \times 8$ lattice, inexact charge conservation) [BNL-Bielefeld, 2202.09184.2212.09043]

Status of $16^3 \times 8$ simulations

13 / 27

How is physics distorted in a smaller volume?

Chiral observables suffer from the reduced volume, but heavy quark observables (e.g. Polyakov loop) are much less affected. [Wuppertal-Budapest 2405.1232]

Transition temperature from chiral observables

Upper curves: *Full chiral susceptibility* Lower curves: *Disconnected part of chiral susceptibility*

$$\chi_{ar{\psi}\psi} \sim rac{\partial^2 \log Z}{\partial m^2}$$

[[]Wuppertal-Budapest 2405.12320]

T_c from the Polyakov loop

[Left: TUM QCD, Bazavov et al 1603.06637]

T_c at finite density

This plot: $48^3 \times 12$ lattice, 4stout

[Wuppertal-Budapest 2405.12320]

T_c extrapolated to eight order

 S_Q itself can be extrapolated (16³ × 8 *lattices*). The temperature of the S_Q -peak is calculated for each μ_B .

What is strangeness neutrality?

Besides light baryons hyperons are also generated with $\mu_B > 0$: $\implies \langle S \rangle < 0$

In experiment (at chemical freeze-out) $\langle S \rangle = 0$. We achieve this by adding $\mu_S > 0$, this is T and μ_B dependent.

$$\mu_{S}^{*}(\mu_{B}, T) = s_{1}(T)\mu_{B} + s_{3}(T)\mu_{B}^{3} + s_{5}(T)\mu_{B}^{5} + \dots$$

One obtains $s_1(T)$, $s_3(T)$ and $s_5(T)$ from the standard Taylor coefficients [HotQCD 1208.1220; 1701.04325]

Our recent continuum results [Wuppertal-Budapest 2312.07528]

Strangeness neutrality in a crosscheck

Besides ligth baryons hyperons are also generated with $\mu_B > 0$: $\implies \langle S \rangle < 0$ In experiment (at chemical freeze-out) $\langle S \rangle = 0$. We achieve this by adding $\mu_S > 0$, this is T and μ_B dependent.

Wuppertal-Budapest preliminary data, $16^3 \times 8$ lattice.

Width of the transition extrapolated to eight order

 S_Q itself can be extrapolated (16³ × 8 *lattices*). The **width** of the S_Q -peak is calculated for each μ_B .

Conclusions

It is still very expensive to access high density physics from the lattice.

- Continuum extrapolated high order coefficients
- Extreme statistics on 16³ × 8 lattices
 - (¹/₂ years in Jülich +5 months on LUMI)
 - one can attempt to extrapolate to so far unattainable parts of the phase diagram.

(today only on coarse lattices)

backup

The Houston critical endpoint

Idea: look at contours of constant entorpy/ T^3 , find spinodal regions.

[Black-Hole-Engineering model Hippert et al[2309.00579]]

[QCD: Shah et al [2410.16206]]

Leading order: Entropy contours are exact parabolas: $T' = A + B\mu_B^2$ Optimistic assumption on error propagation. Critical endpoint estimate: $T_c = 114.3 \pm 6.9$ MeV, $\mu_{B,c} = 602.1 \pm 62.1$ MeV *Is this a first principles result on a CEP?* No, an expansion is defined, where each order can be computed from first principles, this expansion does not automatically break down near the CEP.

Strangeness susceptibility extrapolations

$\chi_2^{S}(\mu_B)$ extrapolation

$$\chi_2^{\mathsf{S}}(T,\mu_B) \approx \chi_2^{\mathsf{S}}(T,0) + \frac{\mu_B^2}{2T^2}\chi_{22}^{\mathsf{BS}}(T,0) + \frac{\mu_B^4}{24T^4}\chi_{42}^{\mathsf{BS}}(T,0) + \frac{\mu_B^6}{720T^6}\chi_{62}^{\mathsf{BS}}(T,0)$$

Testing continuum limits with the 4HEX action

4HEX staggered action with strongly reduced taste breaking. Let's look at those fluctuations e.g. chanrge, that is sensitive to it.

Continuum extrapolation T = 145 MeV with large volume up to $N_t = 16$

4STOUT: Wuppertal-Budapest (2013–2023[Wuppertal-Budapest [1507.04627]] HISQ: BNL-Bielefeld (2011–...)[HotQCD [2107.10011]] 4HEX: Wuppertal-Budapest (2022–...) [Wuppertal-Budapest QM2022]