# QCD phase diagram and the chiral transition

# **Christian Schmidt**





#### **HotQCD Collaboration:**

Dennis Bollweg, David Clarke, Jishnu Goswami, Olaf Kaczmarek, Frithjof Karsch, Swagato Mukherjee, Peter Petreczky, CS, Sipaz Sharma

[PRD 109 (2024) 11, 114516, arXiv: <u>2403.09390</u>] [PRD 105 (2022) 7, 074511, arXiv: 2202.09184]





#### **Bielefeld Parma Collaboration:**

David Clarke, Petros Dimopoulos, Francesco Di Renzo, Jishnu Goswami, Guido Nicotra, CS, Simran Singh, Kevin Zambello [arXiv: 2405.10196] [PRD 105 (2022) 3, 034513, arXiv: 2110.15933]

Budapest, December 2-6, 2024

#### Universal critical behaviour





• We aim on the determination of the parameters, including  $\kappa_2^l, \kappa_2^s, \kappa_{11}^{ls}$ 

- So far no evidence for  $H_c > 0$  in (2+1)-flavor QCD
  - → We assume  $H_c = 0$  and determine  $T_c \equiv T_c^0$

#### Chiral scaling fields and operators



 $f_G(z)$  and  $f_{\chi}(z)$  are the well known universal scaling functions of a single scaling variable Z.

#### [Karsch, Neumann, Sarkar '23]

- \*\* This version of the renormalised order parameter has advantages:
  - No explicit contribution from the strange condensate
  - Direct relation to the scaling function of the free energy [Kotov et. al, '21]

$$M = h_0^{-1/\delta} H^{1/\delta} (f_G(z) - f_{\chi}(z))$$

$$M = h_0^{-1/\delta} (f_G(z)$$

[Ding et al. (HotQCD) '24]



- Determine peak positions of various susceptibilities
  - Definition of pseudo critical line (constant z value)



[Ding et al. (HotQCD) '24]

- $\begin{array}{l} \bigstar \quad \text{Temperature like scaling field} \\ t = \frac{1}{t_0} \left( \Delta T + \kappa_2^l \hat{\mu}_l^2 + \kappa_2^s \hat{\mu}_s^2 + 2\kappa_{11}^{ls} \hat{\mu}_l \hat{\mu}_s \right) \end{array}$
- Ratio of mixed susceptibilities are related to the curvature coefficients

$$\begin{split} \kappa_{2}^{l} &= \frac{1}{2T_{c}} \left( \frac{\partial^{2} M_{l} / \partial \hat{\mu}_{l}^{2}}{\partial M_{l} / \partial T} \right) \Big|_{(T=T_{c},\vec{\mu}=0)} \\ \kappa_{11}^{ls} &= \frac{1}{2T_{c}} \left( \frac{\partial^{2} M_{l} / \partial \hat{\mu}_{l} \hat{\mu}_{s}}{\partial M_{l} / \partial T} \right) \Big|_{(T=T_{c},\vec{\mu}=0)} \\ \kappa_{2}^{s} &= \frac{1}{2T_{c}} \left( \frac{\partial^{2} M_{l} / \partial \hat{\mu}_{s}^{2}}{\partial M_{l} / \partial T} \right) \Big|_{(T=T_{c},\vec{\mu}=0)} \end{split}$$

 results may be transformed to the hadronic basis



$$\underline{m_l} = \underline{0} \quad (N_{\tau} = 8) \qquad \underline{m_l} = \underline{m_s}/27 \quad (\text{cont.})$$

$$\kappa_2^{B,\hat{\mu}_s=0} \equiv \kappa_2^B = 0.015(1) \qquad \kappa_2^{B,n_s=0} = \begin{cases} 0.012(4) & [\text{HotQCD '19}] \\ 0.0153(8) & [BW '20] \end{cases}$$

$$\kappa_2^{B,\hat{\mu}_s=0} = 0.968(23)\kappa_2^{n_s=0}$$

[Ding et al. (HotQCD) '24]

#### Scaling in the vicinity of the QCD critical point

## Mixing of scaling fields:

\* Scaling fields are unknown, a frequently used ansatz is given by a linear mixing of  $T, \mu_B$ 

$$\begin{split} t &= A_t \Delta T + B_t \Delta \mu_B, \\ h &= A_h \Delta T + B_h \Delta \mu_B, \end{split}$$
 with  $\Delta T &= T - T^{\text{CEP}} \text{ and } \Delta \mu_B = \mu_B - \mu_B^{\text{CEP}}$ 





## Fit Ansatz:

\* For a constant  $z = z_c$  we obtain  $\operatorname{Re}[\mu_{\mathrm{LYE}}] = \mu_B^{\mathrm{CEP}} + c_1 \Delta T + c_2 \Delta T^2 + O(\Delta T^3)$  $\operatorname{Im}[\mu_{\mathrm{LYE}}] = c_3 \Delta T^{\beta \delta},$ 

[Stephanov, Phys. Rev. D, 73.9, 094508 (2006)]

\* The fit parameter  $c_1$  gives the (inverse) slope of the 1<sup>st</sup> order line at the critical point:  $c_1 = -A_h/B_h$ 

#### The Padé resummation

- Detecting phase transitions via Padé and post-Padé approximants has a long history in statistical and high energy physics
- They are often used in combination with perturbation theory
- \*QCD is nonperturbative in the vicinity of the phase
- \* The numerical calculation of the pressure series in  $\mu_B$  is difficult



HotQCD, PRD 108 (2023) 1, 014510, arXiv: 2212.09043]

- Construct [4,4]-Padé from 8<sup>th</sup> order Taylor Expansion
- Calculate complex roots of the denominator
- Find apparent
   approach to the real
   axis with decreasing
   temperature
- Can also be combined with conformal maps [Basar, 2312.06952]

$$P[4,4] = \frac{P_2\hat{\mu}_B^2 + (P_4 + (P_2^2 P_8)/P_4^2)\hat{\mu}_B^4}{1 + ((P_2 P_8)/P_4^2)\hat{\mu}_B^2 - (P_8/P_4)\hat{\mu}_B^4}$$



[PRD 105 (2022) 7, 074511, arXiv: 2202.09184]

#### Lattice Data at imaginary $\mu_B$



#### **Observables:**

Derivatives of ln Z, w.r.t μ̂<sub>B</sub> = μ<sub>B</sub>/T
χ<sup>B</sup><sub>n</sub>(T) = V/T<sup>3</sup> (∂∂μ̂<sub>B</sub>)<sup>n</sup> ln Z(T, μ̂<sub>B</sub>)
In Z is even in μ̂<sub>B</sub> = iθ and periodic, with periodicity 2π
Choose 10 equidistant μ̂<sub>B</sub>-points in [0,iπ], all further points are obtained by periodicity and parity

\* Odd (even) derivatives are imaginary (real) at  $\hat{\mu}_B = i\theta$ 

12

#### **Sliding Window Analysis**



#### Procedure:

- \* Perform simultaneous fits to  $\chi_1^B$ and  $\chi_2^B$  for each temperature
- \*Use [3,3]-Padé
- \* Varry length of the fit interval in  $[\pi, 2\pi]$  and the center of the interval in  $[-\pi/2, +\pi/2]$
- \* bootstrap over the data by assuming independent and normal distributed errors
- Calculate roots of the denominator and keep only roots in the first quadrant
- Collect all the results for Lee-Yang scaling fits. We have 55 different intervals per temperature.

#### Fit results

\* Perform one fit for  $N_{\tau} = 8$  and  $\mathcal{O}(10^5)$  fits for  $N_{\tau} = 6$ 



- \* Ellipses show  $1\sigma$  confidence region, using the Pearson correlation coefficient
- \*  $N_{\tau} = 6$  singularities show here are chosen on the basis of the  $\chi^2$  of the scaling fit ("best fit")



- $\operatorname{Re}[\mu_{\mathrm{LYE}}] = \mu_B^{\mathrm{CEP}} + c_1 \Delta T + c_2 \Delta T^2$  $\operatorname{Im}[\mu_{\mathrm{LYE}}] = c_3 \Delta T^{\beta \delta},$
- \* Orange box shows the AIC weighted result for  $N_{\tau} = 6$ , based on  $\mathcal{O}(10^5)$  scaling fits

#### Statistical analysis of fits



\* Histogram over the  $T^{\rm CEP}$  and  $\mu_B^{\rm CEP}$  from the  $\mathcal{O}(10^5)$  fits

\* Error bars are based on the inner 68-percentile

Observe interesting structure

- \* Universal scaling is a very powerful tool if the scaling fields and the universality class are known.
- \* Transition temperate in the chiral limit, pseudo-critical line and curvature coefficients are obtained from scaling fits.
- \* Pseudo-critical lines correspond (asymptotically) to a constant real  $z = t/h^{1/\beta\delta}$ , the Lee-Yang edge to a universal complex  $z_c$
- \* New Strategy: Determine the QCD critical point by the temperature scaling of the Lee-Yang edge singularity
- \* Technically this requires Pade or multi-point Pade analysis of  $\ln Z$  derivatives. The later eliminates the need for the calculation of high order expansion coefficients but introduces some interval dependence.
- \* Find encouraging results for  $N_{\tau} = 6$ :  $(T^{\text{CEP}}, \mu_B^{\text{CEP}}) = (105^{+8}_{-18}, 422^{+80}_{-35})$  MeV.
- \* No continuum result yet
- \* Current estimates of the cutoff effects increase  $\mu_B^{\text{CEP}}$  towards  $\mu_B^{\text{CEP}} \approx 650$  MeV, which is consistent with FRG and DSE results

#### Statistical analysis of fits



\* For  $N_{\tau} = 8$  : similar results by [Basar, arXiv: 2312.06952]

#### **Crossover line and cutoff effects**



Parametrizations of the crossover line:  
\* 1.) 
$$T_{\rm pc}(\mu_B) = T_{\rm pc}(0) \left[ 1 + \kappa_2^B \left( \frac{\mu_B}{T} \right)^2 + \kappa_4^B \left( \frac{\mu_B}{T} \right)^4 \right]$$
  
\* 2.)  $T_{\rm pc}(\mu_B) = T_{\rm pc}(0) \left[ 1 + \bar{\kappa}_2^B \left( \frac{\mu_B}{T_{\rm pc}(0)} \right)^2 + \bar{\kappa}_4^B \left( \frac{\mu_B}{T_{\rm pc}(0)} \right)^4 \right]$ 



[Karsch, Goswami, XQCD '24]

- ♦ QCD and STAR results are in good agreement for  $\sqrt{s_{NN}} < 19.6 \ GeV$
- Slight vertical shift might suggest that freeze-out temperature is slightly below  $T_{pc}$

- HRG model calculations based on noninteracting, point-like hadrons will always lead to R<sup>B</sup><sub>12</sub> < 1</li>
  - HRG can not reproduce STAR data