PION FEMTOSCOPY WITH LÉVY SOURCES: RECENT DEVELOPMENTS

MÁTÉ CSANÁD (FOR THE EÖTVÖS U FEMTOSCOPY GROUP) 2024 ZIMÁNYI SCHOOL WINTER WORKSHOP

> TRADITIONAL SCOTTISH BEEL

ZHI MAN YI

Overflowing with knowledge

HBT OR FEMTOSCOPY IN HIGH ENERGY PHYSICS

- R. Hanbury Brown, R. Q. Twiss observing Sirius with radio telescopes
 - Intensity correlations vs detector distance \Rightarrow source size
 - Measure the sizes of apparently point-like sources!
- Goldhaber et al: applicable in high energy physics
- Understanding: Glauber, Fano, Baym, ...
 Phys. Rev. Lett. 10, 84; Rev. Mod. Phys. 78 1267, ...
 - Momentum correlation C(q) related to source S(r)
 - $C(q) \cong 1 + \left| \int S(r) e^{iqr} dr \right|^2$ (under some assumptions)
 - Also with distance distribution D(r):
 - $C(q) \cong 1 + \int D(r)e^{iqr}dr$
 - Neglected: pair reconstruction, final state interactions, multi-particle correlations, coherence, ...
- What is the source shape? Can be explored via femtoscopy

LÉVY DISTRIBUTIONS IN HEAVY ION PHYSICS

 10^{-2}

9 10

- Central limit theorem, diffusion, and thermodynamics lead to Gaussians
- Measurements suggest phenomena beyond Gaussian distribution
- Lévy-stable distribution:
 - $\mathcal{L}(\alpha, R; r) = \frac{1}{2\pi} \int d^3 q e^{iqr} e^{-\frac{1}{2}|qR|^{\alpha}}$
 - From generalized central limit theorem
 - Power-law tail $\sim r^{-1-\alpha}$
 - Special cases: $\alpha = 2$ Gaussian, $\alpha = 1$ Cauchy
- Shape of the correlation functions with Lévy source:
 - $C_2(q) = 1 + \lambda \cdot e^{-|q_R|^{\alpha}}; \alpha = 2$: Gaussian; $\alpha = 1$: exponential Csörgő, Hegyi, Zajc, Eur.Phys.J. C36 (2004) 67-78
- Lévy source seen & exponent measured from SPS through RHIC to LHC NA61 [EPIC83(2023)919], PHENIX [PRC97(2018)064911, PRC(2024)], CMS [PRC109(2024)024914]

4,, WHY DO LÉVY SHAPES APPEAR, WHY IS IT IMPORTANT?

Dec 3, 2024

200 150 E

100

- A more comprehensive list of possible reasons:
 - Jet fragmentation (Csörgő, Hegyi, Novák, Zajc, Acta Phys.Polon. B36 (2005) 329-337)
 - See also Caucal, Mehtar-Tani, JHEP 09 (2022) 023
 - Important in e^+e^- and other small systems
 - Critical phenomena (Csörgő, Hegyi, Novák, Zajc, AIP Conf.Proc. 828 (2006) no. I, 525-532)
 - Role in the few GeV region? Affected by finite size effects?
 - Directional or event averaging (Cimerman et al., Phys.Part.Nucl. 51 (2020) 282)
 - Ruled out by event-by-event and 3D analyses
 - Lévy walk (BJP37(2007); PRB103(2021), Entropy24(2022); PLB847(2023); arXiv:2409.10373)
 - Only plausible explanation at high energies
- Importance of utilizing Lévy sources, leaving α as parameter:
 - Measuring α and R: quark-hadron transition, critical point, etc
 - Measuring λ : In-medium mass modification, coherent pion production

LÉVY PROCESSES IN NATURE AND IN SCATTERING

- Lévy walk and Lévy flight: known in ecology, climatology, etc.
 - If step size distribution has no finite width: generalized central limit theorem, Lévy-stable limiting distributions
- In HIC: increasing mean free path, step size increases
 - Seen in expansion under Coulomb potential in solid-state physics
- Observed in UrQMD [arXiv:2409.10373]
 - Scatterings, decays, coalescence (no Coulomb scattering)

E. I. Kiselev, Phys. Rev. B 103, 235116 (2021)

Figure 1. The Figure shows the step size distribution $p(\Delta r)$ of a random walk as performed by Coulomb interacting, diffusing particles in two dimensions. At large step sizes, the distribution clearly follows the $p \sim \Delta r^{-3}$ power-law which leads to the superdiffusive dynamics described by Eq. (1). The data was obtained by integrating the system of coupled Langevin equations of Eq. (56).

Dec 3, 2024

CHARGED CLOUD: ANOTHER INTERESTING EFFECT

- Coulomb potential: infinite range, affecting evolution for a long time
- Solid-state physics (as mentioned on previous slide): may cause Lévy flight and power-law tails
- Another interesting effect: distortion of flight paths after kinetic freeze-out
 - Phase shift, similarly to an Aharonov-Bohm effect (arXiv:2007.07167 and arXiv:2410.15525)
- Phase shift decreases correlation strengths

simulated transverse path

SOURCE SIZE MEASURE CHANGE WITH α 7/19

- No tail if $\alpha = 2$, power law and RMS = ∞ if $\alpha < 2$: depends on cutoff
- What do Gaussian HBT radii mean? Important also w.r.t. CEP search
- Alternative measures (see arXiv:2401.01249 for details)
 - HWHM: (half) width at half maximum
 - HWHI: (half) width at half integral
 - Width (normalized by R) nontrivially depends on α
- Relations for 3D Gauss: HWHM $\approx 1.17 \cdot R_G$, HWHI $\approx 1.54 \cdot R_G$
- For (e.g.) Lévy $\alpha = 1.3$: HWHM $\approx 0.61 \cdot R_L$, HWHI $\approx 1.27 \cdot R_L$

 $R_{Gauss} \approx R_{L\acute{e}vy}/1.21$

- Thus (e.g.) $\alpha = 1.3$ and $R_L = 7$ fm "means": $R_{Gauss} \approx R_{L\acute{e}vy}/1.94$
 - Same HWHM Gaussian: $R_G \approx 3.61$ fm \leftarrow
 - Same HWHI Gaussian: $R_G \approx 5.77$ fm \leftarrow

8,,, ENERGY DEPENDENCE OF LÉVY SOURCE SIZE?

- Experimental observation: $\hat{R} = \frac{R}{\lambda(1+\alpha)}$ doesn't depend on $\alpha \rightarrow \text{can estimate } R_{\text{free }\alpha} = R_{\text{Gauss}} \frac{\lambda_{\text{free }\alpha}(1+\alpha)}{\lambda_{\text{Gauss}}(1+2)}$
 - Assuming trends of α and λ as $A \cdot \sqrt{s_{NN}}^B$, with $A_{\alpha} = 1.85, B_{\alpha} = -0.06, A_{\lambda} = 0.6, B_{\lambda} = 0.06$
- Different trends of guesstimated $R_{Lévy}$ and R_{Gauss}
- Caused by shape change with $\sqrt{S_{NN}}$
- Connection of $\sqrt{R_o^2 R_s^2}$ to emission duration: based on Gaussian sources,
- Maybe $(R_o^{\alpha} R_s^{\alpha})^{1/\alpha}$ for Lévy source, Csörgő, Hegyi, Zajc, EPJC36(2004)67
- Importance of measuring $R_{o,s,l}$ with free α

 \widehat{R} scaling guesstimate for Lévy radii

original Gaussian radii

 α -powered version –

9, LÉVY SHAPES IN SINGLE 3D EPOS EVENTS, 3D

- What if the Lévy shapes appeared only because of directional averaging?
- Let's check 3D event shapes in EPOS! \rightarrow Also Lévy, with similar α and radii (as those in ID)
- Clear physical reason: Lévy walk, see poster/talk by D. Kincses on Thu

On CENTRALITY DEPENDENCE AT 200 GEV

- Lévy scale R: decreasing trend with m_T and with centrality
 - Connection to flow and initial geometry, similarly to Gaussian radii
- Lévy exponent α : EPOS quantitatively close, largest discrepancy for central collisions
 - Effect of Coulomb scattering? PRB103(2021)235116, arXiv:2410.15525
- Correlation strength λ : increase from low to high m_T and from peripheral to central collisions
 - m_T dependence: modified in-medium η' mass? PRL81(1998)2205, PRL105(2010)182301, arXiv:2407.08586 (see next talk by S. Lökös)

NA61/SHINE RESULTS

- At I 50 AGeV: α (Be+Be) < α (Ar+Sc)
- Interesting trend of α for smaller energies in Ar+Sc
 - (not incompatible with constant)
- Next step: Xe+La, 3D analysis
- See more details by B. Pórfy on Thu
 - $\alpha(m_T)$ approximately constant
 - $R(m_T)$ shows sign of flow
 - $\lambda(m_T)$ shows no "hole" at low m_T
 - Compare to RHIC energies

LÉVY EXPONENT FROM 3.2 TO 200 GEV

- Non-gaussian values ($\alpha \ll 2$)
- Increasing density \rightarrow rescattering decreases α ?
- 200 GeV centrality dependence, same trend
 - Larger α for peripheral collisions
- Trend described by power-law: $\alpha_0 \approx 0.85 + \sqrt{s_{NN}}^{-0.14}$
- Good description by UrQMD at FXT energies, comprehensive energy scan is ongoing
- No non-monotonic trend in α observed yet, far from conjectured critical value (0.5)

3/19 STAR 3D PRELIMINARY DATA AT 200 GEVVS EPOS

- See STAR analysis in talk by S. Bhosale
- EPOS and data (both from 3D analysis) comparison shows good agreement for radii
 - EPOS from arXiv:2409.10373
- Moderate discrepancy for R_{side} and α : maybe due to long-range Coulomb scattering (not in EPOS)

SO WHEN DO THE POWER-LAW TAILS FORM? 4/19

- Based on EPOS: apparently Gaussian in hydro phase
- Power-law tails due to Lévy-walk: scattering processes
 - 2-by-2, decay, coalescence, etc
- How to test? Particle type dependence!
 - Based on cross-sections: $\alpha(p) > \alpha(\pi) > \alpha(K)$ • Humanic, IJMPE15(2006)197, Csanád, Csörgő, Nagy, BJP37(2007)1002
 - Not confirmed by EPOS! Role of decays and inelastic collisions?

200

150 [آ ______ 100 [²

50

0

2

itmi

62 0

arXiv:2409.10373

- Good agreement between kaons and pions, experiment and EPOS
 - Slightly surprising: same source for kaons and pions, despite role of scattering?
 - See talk/poster by L. Kovács on Thursday

16, PARTICLE SPECIES COMPARISION, DATA VS EPOS, LÉVY R

- Good agreement between kaons and pions, experiment and EPOS
 - Slightly surprising: same source for kaons and pions, despite role of scattering?
 - See talk/poster by L. Kovács on Thursday

7/19 CONCLUSIONS AND OUTLOOK

- Lévy sources for pions seen from 3.2 to 200 GeV with STAR, also in 3D
 - Lévy α : between I and 2, increases with $\sqrt{s_{NN}}$
 - Lévy R: hydro scaling, relation to Gaussian through HWHM/HWHI
 - Lévy λ : decrease at low transverse mass
- Possible reasons:
 - Jet fragmentation → not dominant in AA collisions
 - Critical phenomena \rightarrow no non-monotonicity seen, more energies to be investigated
 - Directional averaging \rightarrow good fits and same Lévy exponent in ID and 3D
 - Event averaging → event-by-event simulations show Lévy
 - **Resonance decays** \rightarrow part of the reason, not enough alone
 - Hadronic rescattering, Lévy walk \rightarrow good description of measurements
- Questions to be answered:
 - Effect of EoS on α and $R_{out}^2 R_{side}^2$ versus $\sqrt{s_{NN}}$?
 - What collision energy dependence do models predict?

THANK YOU FOR YOUR ATTENTION

BACKUP

20/19 INTERACTIONS

- Plane-wave result, based on $|\Psi_{2,q}^{(0)}(r)|^2 = 1 + e^{iqr}$, for pair source D(r)
- $C_2(q,K) \cong \int D(r,K) \left| \Psi_{2,q}^{(0)}(r) \right|^2 dr = 1 + \int D(r,K) e^{iqr} dr$
- If there are interactions, solve Schrödinger eq: $\Psi_{2,q}^{(0)}(r) \rightarrow \Psi_{2,q}^{(int)}(r_1, r_2)$
- For Coulomb, solution is known: $|\Psi_{2,q}^{(C)}(r)|^2 = \frac{\pi\eta}{e^{2\pi\eta}-1} \cdot (\text{hypergeometric expression})$
- Direct fit with this, or the usual iterative Coulomb-correction: $C_{\text{Bose-Einstein}}(q)K(q), \text{ where } K(q) = \int D(r, K) \left| \Psi_{2,q}^{(C)}(r) \right|^2 dr / \int D(r, K) \left| \Psi_{2,q}^{(0)}(r) \right|^2 dr_{\underline{E}^{100}}(r)$
- Complication: need for integrating power-law tails
 - Precalculated in a tabular form, iterative fitting, e.g., PHENIX, PRC97(2018)064911
 - Interpolating functional form, see Csanád, Lökös, Nagy, Phys.Part.Nucl. 51 (2020)238
 - Role of the strong interaction, see Kincses, Nagy, Csanád, PRC102(2020)064912
 - Recent method: EPJC83(2023)1015, code at github.com/csanadm/CoulCorrLevyIntegral
- Many new results, also for the strong interaction: see talk by M. Nagy on Tuesday

HOW TO CALCULATE THE COULOMB EFFECT

- Calculating correlation functions with the Coulomb effect included: time consuming in the past
- Method used in early analyses: Coulomb correction calculated for fixed radius and shape
 - For example, fixing R = 5 fm and $\alpha = 2$
- More consistent method: correlation function with Coulomb FSI precalculated in a tabular form
 - Iterative fitting, see e.g., PHENIX, PRC97 (2018) 6, 064911
- Convenient, but somewhat restricted method: interpolating functional form, in a limited R, α range
 - See Csanád, Lökös, Nagy, Phys.Part.Nucl. 51 (2020) 238, used in arXiv:2306.11574 [CMS], arXiv:2302.04593 [NA61]
- Recent method: see talk by Márton Nagy
 - Nagy, Purzsa, Csanád, Kincses Eur. Phys. J. C 83, 1015 (2023), code at github.com/csanadm/CoulCorrLevyIntegral
 - Recent developments: 3D calculation, protons, see talk by M. Nagy on Wednesday

LÉVY INDEX AS A CRITICAL EXPONENT?

• Critical spatial correlation: ~ $r^{-(d-2+\eta)}$; Lévy source: ~ $r^{-(1+\alpha)}$; $\alpha \Leftrightarrow \eta$?

Csörgő, Hegyi, Zajc, Eur. Phys. J. C36 (2004) 67

• QCD universality class \leftrightarrow 3D Ising

Halasz et al., Phys.Rev.D58 (1998) 096007 Stephanov et al., Phys.Rev.Lett.81 (1998) 4816

- At the critical point:
 - Random field 3D Ising: η = 0.50±0.05
 Rieger, Phys.Rev.B52 (1995) 6659
 - 3D Ising: η = 0.03631(3)
 El-Showk et al., J.Stat.Phys.157 (4-5): 869
- Motivation for precise Lévy HBT!
- Change in α_{Levy} proximity of CEP?

• Finite-size/time & non-equilibrium effects \rightarrow what does power-law tail mean?

8 2.0

-évy index of stability 50 01

• Finite-size effects not important? See e.g. Fytas et al, PRE93, 063308 (2016), Ballesteros et al., PLB387 (1996) 125

 $(T - T_c)/T_c$

-0.5

Dec 3, 2024

RHIC-

Beam Energy Scan

LHC

23,,, RESCALING HBT RADII FROM GAUSS TO LÉVY

LÉVY SHAPES IN SINGLE EPOS EVENTS, ID

- EPOS model: parton-based Gribov-Regge theory (PBGRT)
 - Werner et al., PRC82 (2010) 044904, PRC89 (2014) 064903, ..
- Source observed in four stages:
 - a) CORE, primordial pions: close to Gaussian
 - b) CORE, with decay products: power-law structures
 - c) CORE+CORONA+UrQMD, primordial pions: Lévy shape
 - d) CORE+CORONA+UrQMD, with decay products: Lévy shape
 - Radii in the four stages (one example event) $3.59 \text{ fm} \rightarrow 4.89 \text{ fm} \rightarrow 7.36 \text{ fm} \rightarrow 7.45 \text{ fm}$
 - Shape (α) change: 2.00 \rightarrow 1.77 \rightarrow 1.55 \rightarrow 1.46
- Can one relate the observed HBT radii to the hydro phase homogeneity lengths?
- More investigations needed...
- See talks by D. Kincses, E. Árpási, L. Kovács, M. Molnár on Thu

25, FIXED TARGET ENERGIES: 3.2 AND 3.9 GEV

- Non-Gaussian values ($\alpha < 2$); small systematic difference between $\pi^{-}\pi^{-}$ and $\pi^{+}\pi^{+}$ pairs
- 3.9 and 3.2 GeV compatible, no m_T dependence observed
- UrQMD within uncertainties no other effect but rescattering and decays, good agreement (t<50 fm/c!)

26,,, CORRELATION STRENGTH λ: CORE/HALO

- Two-component core+halo source
 - Core: hydrodynamically expanding, thermal medium
 - Halo: long lived resonances ($\gtrsim 10 \text{ fm/c}, \omega, \eta, \eta', K_0^{S}, ...$)
 - Unresolvable experimentally
 - Define $f_C = N_{\rm core}/N_{\rm total}$
- True $q \rightarrow 0$ limit: C(0) = 2
- Apparently $C(q \rightarrow 0) \rightarrow 1 + \lambda$
- $\lambda(m_{\mathrm{T}}) = f_{C}^{2}(m_{\mathrm{T}})$

Bolz et al, Phys.Rev. D47 (1993) 3860-3870; Csörgő, Lörstad, Zimányi, Z.Phys. C71 (1996) 491-497

27,19 ROLE OF EVENT AVERAGING?

- Event-averaged source also analyzed
- Not perfectly Lévy shape, very large χ^2
- Nevertheless: similar parameters achieved
 - Event averaged: $\alpha \approx 1.62, R \approx 9.15 \text{ fm}$
 - Event-by-event: $\alpha \approx 1.66, R \approx 8.96 \text{ fm}$
- More reasonable approach for kaons
 - No event-by-event analysis possible for kaons

28/17 SOURCE OR PAIR DISTRIBUTION?

• Under some circumstances (thermal emission, no interactions, ...):

$$C_{2}(q,K) = \int S\left(r_{1},K + \frac{q}{2}\right) S\left(r_{2},K - \frac{q}{2}\right) |\Psi_{2}(r_{1},r_{2})|^{2} dr_{1} dr_{2}$$

$$\approx 1 + \left|\int S(r,K) e^{iqr} dr\right|^{2}$$

Dec 3, 2024

• Let us introduce the spatial pair distribution:

$$D(r,K) = \int S\left(\rho + \frac{r}{2}, K\right) S\left(\rho - \frac{r}{2}, K\right) d\rho$$

• Then the Bose-Einstein correlation function becomes:

$$C_2(q,K) \cong \int D(r,K) |\Psi_2(r)|^2 dr = 1 + \int D(r,K) e^{iqr} dr$$

- Bose-Einstein correlations measure spatial pair distributions!
- Coulomb and strong Final State Interactions? Under control for Lévy sources

Csanad, Lökös, Nagy, Phys. Part. Nuclei 51 (2020) 238 [arXiv:1910.02231] Kincses, Nagy, Csanad Phys. Rev. C102, 064912 (2020) [arXiv:1912.01381]

29, ROLE OF THE STRONG INTERACTION

• In case of other interactions or not identical bosons, the formula still works:

 $C_2(q,K)\cong\int D(r,K)|\Psi_2(r)|^2dr$

- Pair wave function determines $D \leftrightarrow C_2$ connection
- Mesons, baryons: strong interaction; fermions: anticorrelation
- Non-identical pairs: interaction modifies wave function

30// STRONG INTERACTION FOR PION PAIRS

- Additional potential appearing
 - Possible handling: strong phase shift, Modify s-wave component in wave func.
 R. Lednicky, Phys. Part. Nucl.40, 307 (2009)
 - Small difference in case of pions

(g)^{1.7} 0[∞]1.6

1.5E

1.4⊟

1.3

1.2

1.1]

 $\alpha = 1.5, \lambda = 1$

R = 4 fm

= 6 fm

= 8 fm.

R = 8 fm

Coulomb only

Coulomb + strong

31/19 TWO-PARTICLE SPATIAL CORRELATIONS

• Object to be investigated: two-particle source

$$D(r,K) = \int d^4 \rho S\left(\rho + \frac{r}{2},K\right) S\left(\rho - \frac{r}{2},K\right)$$

- Experimental results measure power-law tails, Lévy shapes
 - Measure momentum-space correlations, reconstruct D(r) or fit its parameters
- Why do these Lévy shapes appear?
 - What physics does contribute to it? Rescattering, decays?
 - What role does event averaging have in it? Cimerman, Plumberg, Tomasik, Phys.Part.Nucl. 51 (2020) 282, PoS ICHEP2020 538
 - What do specific α values mean?
- Event generator models (like EPOS) direct access to pair-source!
 - Phenomenological investigations of D(r) possible
 - Effects can be turned off or on, investigated separately

EPOS SUMMARY

- D(r) calculated in EPOS evt-by-evt
- Lévy fits done evt-by-evt
- Non-Gaussianity in single events
- Extracting mean, & std.dev. of R, α
- m_T & centrality dependence

33,,, RESULTS AT COLLIDER ENERGIES: 7.7 TO 200 GEV

- Slow decrease with $\sqrt{s_{NN}}$ from 200 to 7.7 GeV
 - Same trend as Gaussian R^{α}
- Decrease in R with m_T
 - Connection to flow
- 200 GeV: EPOS close to data

34,,, RESULTS AT COLLIDER ENERGIES: 7.7 TO 200 GEV

- Small, smooth increase in α with $\sqrt{s_{NN}}$ from 200 to 7.7 GeV
 - Connection to decreased density?
- No strong dependence on m_T
- Average α
 - \approx I.33 at 200 GeV
 - \approx I.62 at 7.7 GeV
- Significantly below 2.0 and above 1.0

ර 2	STAR preliminary	0-10% Au+A	u , $\pi^{\pm}\pi^{\pm}$	α(m _T) =	α ₀
1.8	α ₀ =1.326±0.002(sta) ^{+0.039} _{-0.040} (sys)	α ₀ =1.431±0.003(st	a) _{−0.028} (sys) α₀	_=1.492±0.002(st	a) ^{+0.042} (sys)
1.6	χ^{2} /NDF = 13/20, CL = 89.3%	χ^{2} /NDF = 30/20, C	$L = 6.7\% \left[\chi^2 \right]$	/NDF = 31/20, C	L = 6.1%
1.4					
1.2			÷		
1	<u></u>	∮√s_{NN} = 54.4 GeV	′ (Run-17)	s _{NN} = 27 GeV (I	Run-18)
2	√s _{NN} = 19.6 GeV (Run-19)	∳ <mark>√s_{NN}</mark> = 14.5 GeV	(Run-19) [† √	s _{NN} = 7.7 GeV (Run-21)
1.8	-		÷	_	,
1.6			┍╗╗╄┝┥╞──	<u>₽₽₽₽₽₽</u>	
1.4					۵
1.2	α ₀ =1.499±0.003(sta) ^{+0.056} (sys)	α_{0} =1.529 \pm 0.004(s	ta) _{−0.039} (sys) α₀	_=1.619±0.008(st	a) ^{+0.045} (sys)
1	χ^{2} /NDF = 39/20, CL = 0.8%	χ^2 /NDF = 37/20, C	$L = 1.1\% \chi^2$	/NDF = 5/9, CL =	= 100.0%
	0.2 0.4 0.6 0.8	0.2 0.4 0	.6 0.80.2	2 0.4 0	.6 0.8
				m _T	[GeV/c ²]

35,,, RESULTS AT COLLIDER ENERGIES: 7.7 TO 200 GEV

- Clear decrease in λ with $\sqrt{s_{NN}}$ from 200 to 7.7 GeV
 - Decrease in multiplicity
 - Larger role of halo
- Decrease towards small m_T values
 - Increase in halo for small m_T
 - Attributed to modified in-medium η' mass in literature

LÉVY SCALE R AT FXT ENERGIES

- Decreases towards higher m_T and lower energies
- Small systematic difference between $\pi^-\pi^-$ and $\pi^+\pi^+$ pairs
- Two FXT energies compatible
- UrQMD describes the trends qualitatively well, moderate quantitative mismatch, but ran only until 50 fm/c

