

Recent studies on heavy-flavor femtoscopy in heavy-ion collisions by STAR

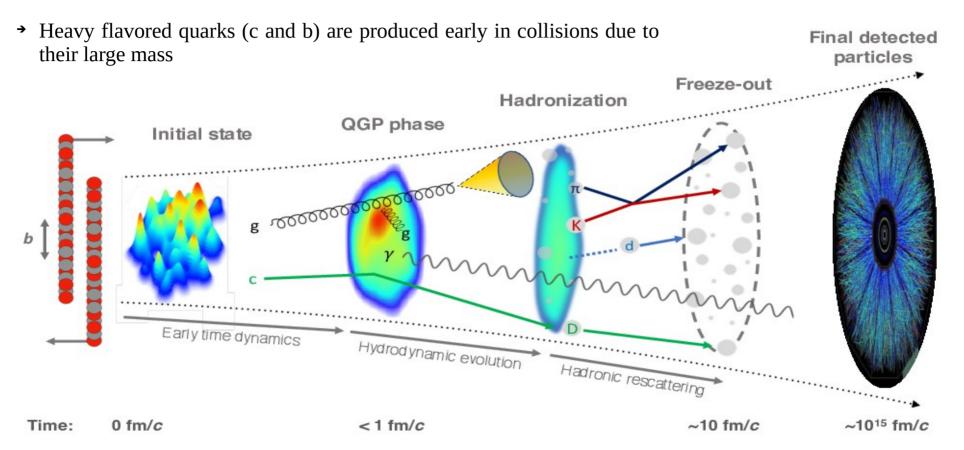
Priyanka Roy Chowdhury

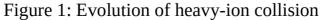
(for the *STAR Collaboration*)

Warsaw University of Technology, Poland

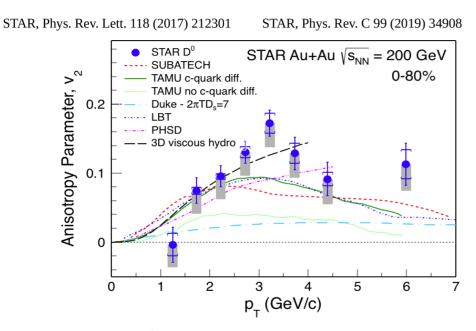
ZIMÁNYI SCHOOL 2024

24th Winter Workshop on Heavy-ion Physics


2 - 6 December 2024, Budapest, Hungary


Supported in party by

Heavy-flavors in Heavy-ion Collisions (HIC)



arXiv:2303.17254 [nucl-ex]

Motivation: charm interaction with QGP

 \rightarrow Significant D⁰ elliptic flow and suppression of D⁰ meson at high p_T are observed in heavy-ion reactions at RHIC

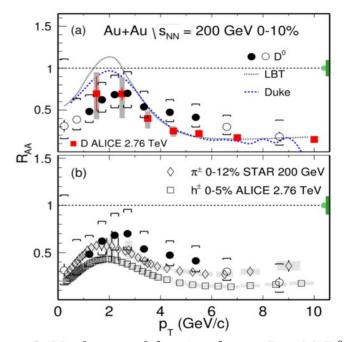


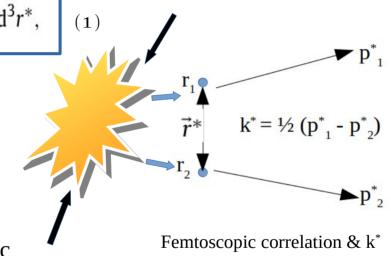
Figure 2: D⁰ anisotropy vs. transverse momentum

Figure 3: Nuclear modification factor, $R_{AA}(a)$ D^0 , (b) $\pi^{+/-}$ & $h^{+/-}$

- → Strong interaction of charm quarks with the quark-gluon plasma and their thermalization
- → New observables to constrain different models and understand production mechanism

Femtoscopic correlation

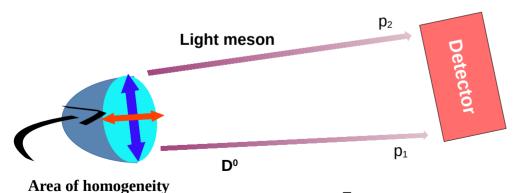
→ Femtoscopic correlations are observed between pair of particles with low relative momentum


• Correlations are measured as a function of the reduced momentum difference (k*) of the pair of

particles in rest frame

$$C(\vec{k}^*) = \int S(\vec{r}^*) \left| \Psi(\vec{k}^*, \vec{r}^*) \right|^2 d^3r^*,$$

where, $S(\vec{r}^*) \rightarrow$ source emission function $\vec{r}^* \rightarrow$ relative separation vector $\Psi(\vec{k}^*, \vec{r}^*) \rightarrow$ pair wave function


- → Femtoscopic Correlation → QS + FSI
 - Quantum Statistics [QS]: Bose-Einstein / Fermi-Dirac
 - Final-State-Interaction [FSI]: Strong & Coulomb interaction
 - Poly Strong interaction contributes to $D^0/\overline{D^0}$ -h[±] femtoscopy

M. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Annu. Rev. Nucl. Part. Sci. 2005.55:357-402

Physics outcomes

- → Two-particle femtoscopic correlations are sensitive to the interactions in the final state as well as to the extent of the region from which correlated particles are emitted
- → Average distance between emission points of correlated pairs (D⁰-hadron) is known as '*length of homogeneity*'
- → Femtoscopy may provide additional information about the correlation between charmed mesons and light mesons at the freeze-out

Proton D^0 / \overline{D}^0 Hadron Gas QGP $(\tau_0 < 1 \text{ fm/c})$

Figure 4: c/c as a probe of QGP medium and final-state interaction

Extraction of interaction parameters

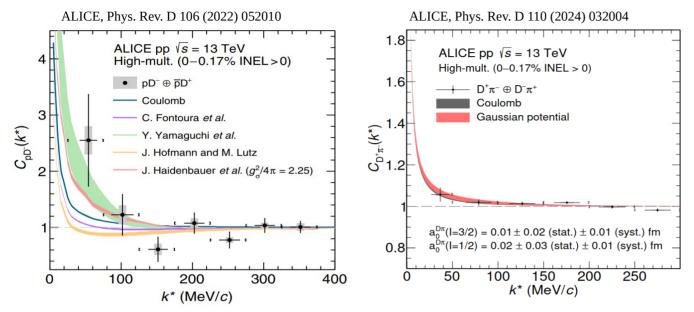
The Lednicky–Lyuboshitz analytical model connects the correlation function with final-state strong interaction parameters

$$C(k^*) = 1 + \sum_{S} \rho_s \left[\frac{1}{2} \left| \frac{f^S(k^*)}{r_0} \right|^2 \left(1 - \frac{d_0^S}{2\sqrt{\pi}r_0} \right) + \frac{2\Re(f^S)(k^*)}{\sqrt{\pi}r_0} F_1(Qr_0) - \frac{\Im(f^Sk^*)}{r_0} F_2(Qr_0) \right]$$
(2)

where, $f^s(k^*)$ is the scattering length, d_0^s is effective range for singlet (s = 0) or triplet (s = 1) state ρ_s is fraction of pairs with a given spin s ($\rho_0 = \frac{1}{4}$ and $\rho_1 = \frac{3}{4}$)

$$Q=2k^*$$
, $F_1(z)=\int_0^z dx \, e^{x^2-z^2}/z$, $F_2(z)=(1-e^{-z^2})/z$

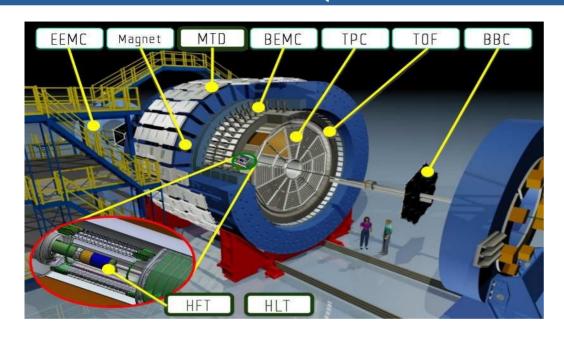
This model assumes, average separation vector (\vec{r}^*) from eq. (1), follows Gaussian distribution


$$dN^{3}/d^{3}r^{*} e^{-r^{*2}/4r_{0}^{2}}$$
(3)

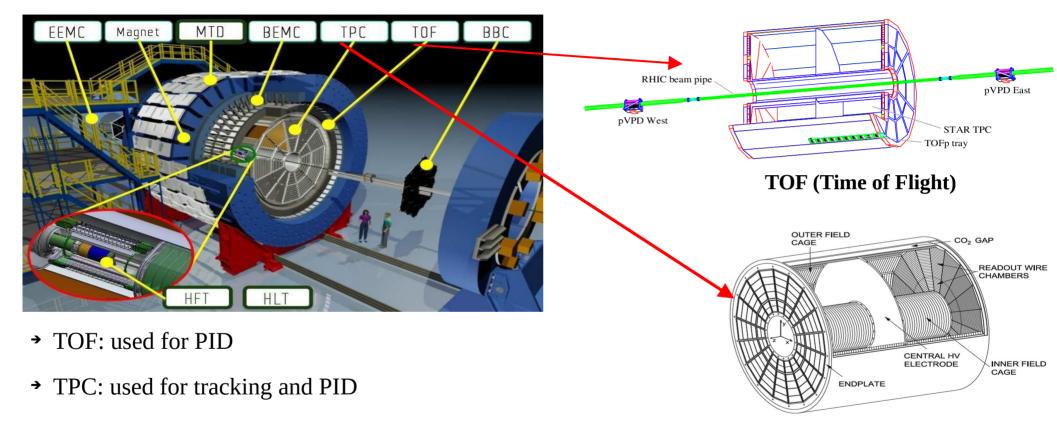
where, r_0 is the effective radius of the correlated source

STAR, Phys. Rev. C 74 (2006) 064906

D-hadron femtoscopy in p-p system at LHC

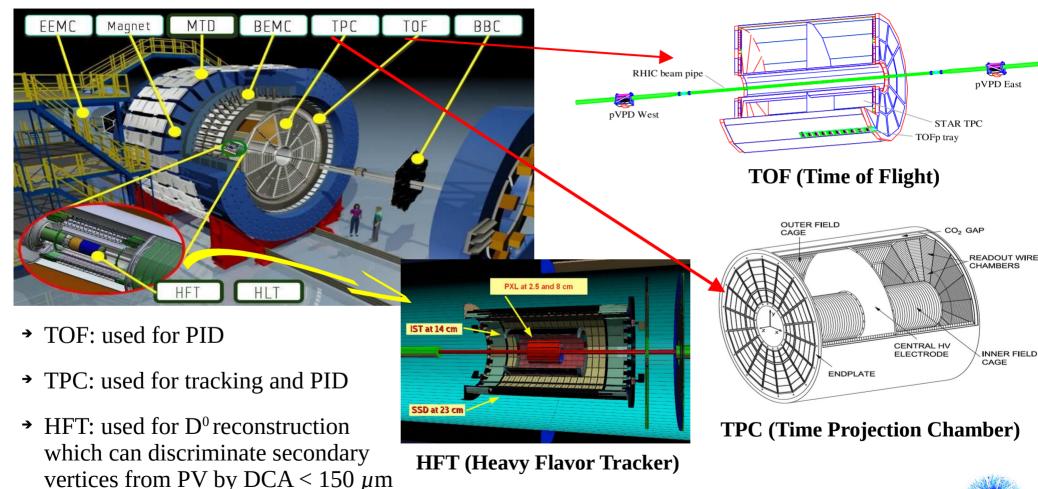


- First studies of D-hadron interactions in pp collisions at $\sqrt{s} = 13$ TeV by the ALICE experiment
- → ALICE data for both p-D and D- π pairs are compatible within (1.1 1.5) σ with the theory predictions obtained from the hypothesis of Coulomb only interaction


Figure 5: $C(k^*)$ for (left) pD and (right) πD pairs and interaction behavior of D^{\pm} at final state

- → Small values of $a_{\pi D}$ (scattering length) \rightarrow ALICE measurement suggests strong interactions in the hadronic phase of heavy-ion collision are small (parameters are consistent with 0)
- → Possiblity to learn something new about nuclear medium or QGP by measuring the source size or length of homogeneity in Au+Au system

STAR (Solenoidal Tracker At RHIC)



STAR (Solenoidal Tracker At RHIC)

TPC (Time Projection Chamber)

STAR (Solenoidal Tracker At RHIC)

Particle Identification (PID)

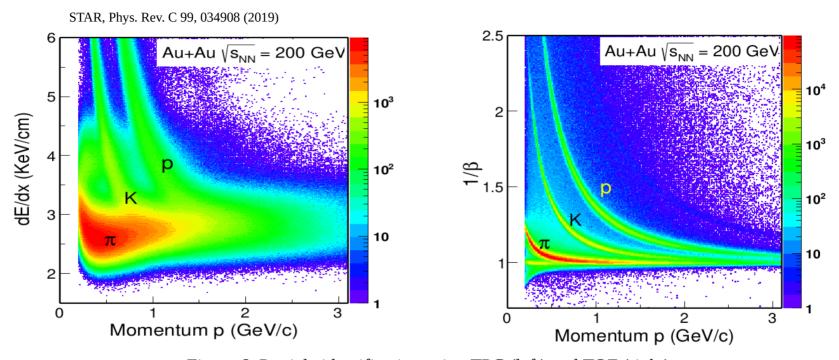
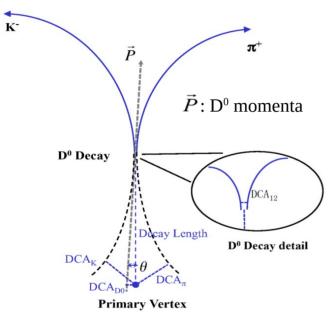



Figure 6: Particle identification using TPC (left) and TOF (right)

- \rightarrow dE/dx bands for π and K overlap around 0.7 GeV/c; K and p bands overlap beyond 1.2 GeV/c
- → To distinguish between π , K and p at higher momenta (> 0.7 GeV/c), TOF information was required

Dataset and D⁰ meson reconstruction

STAR, Phys. Rev. C 99, 034908 (2019)

 $c\tau \approx 123 \mu m$

 $1.6 < D^0$ mass window $< 2.2 \text{ GeV/c}^2$

 $D^0 \rightarrow mixture \ of \ D^0 \ (K^-\pi^+) \ and \ \overline{D}{}^0 \ (K^+\pi^-)$

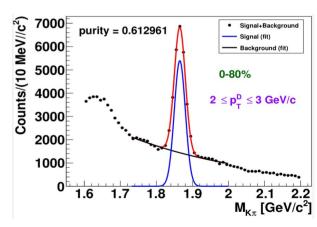
Dataset:

- → Au+Au, 200 GeV, collected in Run 2014
- → Trigger: Minimum bias
- \rightarrow Centrality: 0 80%
- → 490 M good minimum bias events

D⁰ reconstruction:

- → Decay length distance between decay vertex and primary vertex (PV)
- → Distance of Closest Approach (DCA) between:
 - a) K^{-} & π^{+} DCA₁₂
 - b) π^+ & PV DCA $_\pi$
 - c) K- & PV DCA_K
 - d) D^0 & PV DCA_{D0}
- $\rightarrow \theta$ angle between \vec{P} & decay length

*D*⁰ invariant mass & signal purity



- Invariant mass distribution of unlike-sign (K⁻π⁺) pairs
- → Invariant mass range for D⁰ signal: 1.82 1.91 GeV/c²
- → D⁰ signal and background are fitted with respectively Gaussian and exponential function
- $\rightarrow D^0 \text{ purity: } Signal \\
 \overline{(Signal + Background)}$
- → Higher D⁰ signal purity with increasing p_T bin

Figure 7: p_T dependence of $K\pi$ invariant mass distribution and D^0 signal purity

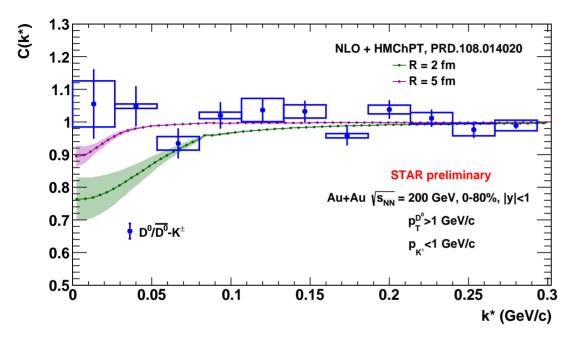
Correction of raw correlation function

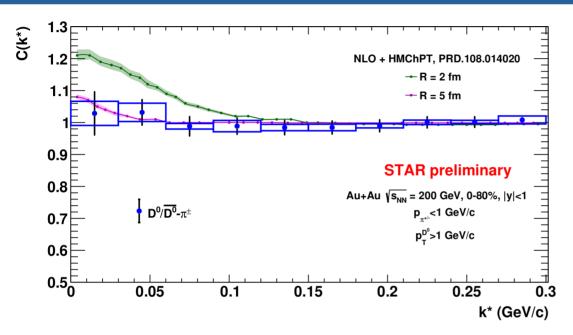
- → Correlation function $C(k^*)$ for D^0/\overline{D}^0 $h^{+/-}$ pairs: $C(\vec{k}^*) = \mathcal{N} \frac{A(\vec{k}^*)}{R(\vec{k}^*)}$.
 - $A(\vec{k}^*)$ and $B(\vec{k}^*) \rightarrow k^*$ distribution for correlated and uncorrelated pairs; $\mathcal{N} \rightarrow$ normalization factor
- → Pair-purity corrected correlation function: $C_{\text{measured}}^{\text{corr}}(k^*) = \frac{C_{\text{measured}}(k^*) 1}{\text{PairPurity}} + 1$, (5) where PairPurity = **D**⁰ **purity** * **hadron purity**
- \rightarrow $C_{\text{measured}}(k^*)$ is the raw correlation function calculated using Eq. (4)
- → D⁰-hadron pair purity correction is required to remove the contribution from combinatorial background under D⁰ signal peak

Correction of raw correlation function

- → Correlation function $C(k^*)$ for D^0/\overline{D}^0 $h^{+/-}$ pairs: $C(\vec{k}^*) = \mathcal{N} \frac{A(\vec{k}^*)}{B(\vec{k}^*)}$. (3)
 - $A(\vec{k}^*)$ and $B(\vec{k}^*) \rightarrow k^*$ distribution for correlated and uncorrelated pairs; $\mathcal{N} \rightarrow$ normalization factor
- → Pair-purity corrected correlation function: $C_{\text{measured}}^{\text{corr}}(k^*) = \frac{C_{\text{measured}}(k^*) 1}{\text{PairPurity}} + 1$, (4) where PairPurity = **D**⁰ **purity** * **hadron purity**
- \rightarrow $C_{\text{measured}}(k^*)$ is the raw correlation function calculated using Eq. (4)
- → D⁰-hadron pair purity correction is required to remove the contribution from combinatorial background under D⁰ signal peak
- → Average D⁰ purity ~ 37%, 1 GeV/c $< p_T < 10$ GeV/c
- → Kaon purity ~ $(97 \pm 3 \text{ (syst.)})\%$, $p_K < 1 \text{ GeV/c}$
- → Pion purity ~ $(99.5 \pm 0.5 \text{ (syst.)})\%$, $p_{\pi} < 1 \text{ GeV/c}$
- → Proton purity ~ $(99.5 \pm 0.5 \text{ (syst.)})\%$, p_p < 1.2 GeV/c

Results: D^0/\overline{D}^0 - $K^{+/-}$ correlation




Figure 8: $C(k^*)$ for D^0 -K pairs with systematic uncertainties (boxes). Green and pink bands are theory predictions of $C(k^*)$ for D^0 -K⁺ channel using source radii of 2 fm and 5 fm respectively

- → $C(k^*)$ measured for D^0 - K^+ , D^0 - K^- , \overline{D}^0 - K^+ and \overline{D}^0 - K^- with kaon momentum < 1 GeV/c and $D^0 p_T > 1 \text{ GeV/c}$
- → Theory predictions are estimated for D⁰-K⁺ channel using next-to-leading order (NLO) Heavy Meson Chiral Perturbation Theory (HMChPT) scheme
- → Resonance effect of D_{S0}* (2317)[±] (DK bound state) is NOT visible due to large source size or large experimental uncertainties

NLO + HMChPT: M. Albaladejo et al., Phys. Rev. D 108, 014020

→ STAR data shows no significant correlations, but the data consistent with theoretical model prediction with emission source size of 5 fm within uncertainty

Results: $D^0/\overline{D}^0-\pi^{+/-}$ correlation

- → C(k*) calculated for D⁰-π⁺, D⁰-π⁻, \overline{D}^0 π⁺ and \overline{D}^0 -π⁻ with π momentum < 1
 GeV/c and D⁰ p_T > 1 GeV/c
- → Theory calculations consist of D⁰-π⁺ and D⁺-π⁰ channels using next-to-leading order (NLO) Heavy Meson Chiral Perturbation Theory (HMChPT) scheme

NLO + HMChPT: M. Albaladejo et al., Phys. Rev. D 108, 014020

Figure 9: $C(k^*)$ for D^0 - π pairs with systematic uncertainties (boxes). Green and pink bands are theory predictions of $C(k^*)$ for D- π channel using source radii of 2 fm and 5 fm respectively

→ STAR data shows no significant correlations, but the data consistent with theoretical model prediction with emission source size of 5 fm within uncertainty

Results: $D^0/\overline{D}^0-p^{+/-}$ correlation

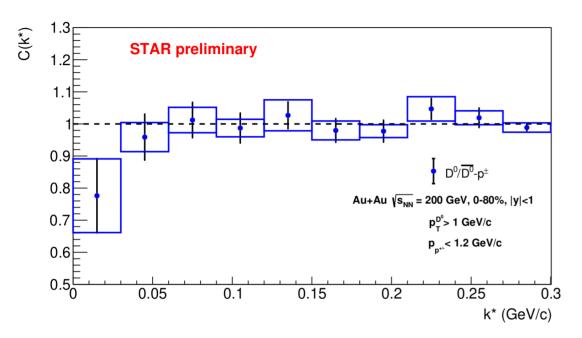
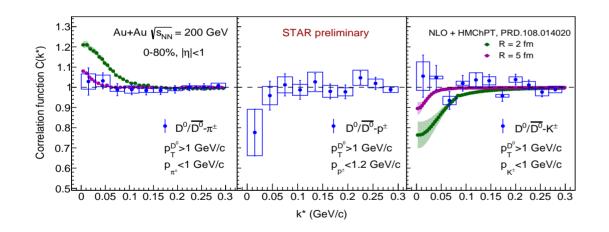


Figure 10: C(k*) for D⁰-p pairs with systematic uncertainties (blue brackets)


- → $C(k^*)$ contains D^0-p^+ , D^0-p^- , \overline{D}^0-p^+ and \overline{D}^0-p^- with proton momentum < 1.2 GeV/c and $D^0p_T > 1$ GeV/c
- → No theory prediction available

Predictions?

- → We do not observe significant correlations between D⁰-p pairs
- → Suggesting large emission source size

Summary & future plans

- D-meson femtoscopy is applicable to probe the interaction behavior of charmed hadron and the phase space geometry of emission source
- Correlation studies between D⁰ and charged hadrons, provide consistent results with no significant correlation and large emission source size (~ 5 fm or larger)

Even though current statistical precision is not sufficient to make decisive conclusions but good prospects for improving precision of the measurement

→ Theoretical inputs are required to connect the observed correlation functions and interaction parameters of charm and light quarks before hadronization

Freeze-out dynamics

→ Properties of nuclear medium

Example – source size measured at RHIC with Kaons compatible with model calculations employing hydrodynamics

→ Local thermal equilibrium

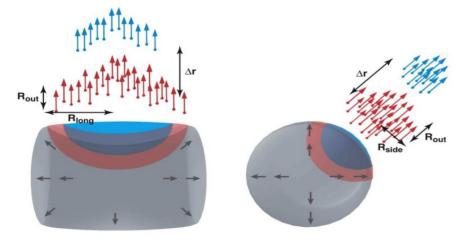


Figure 6: Emission source phase-space

M. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Annu. Rev. Nucl. Part. Sci. 2005.55:357-402

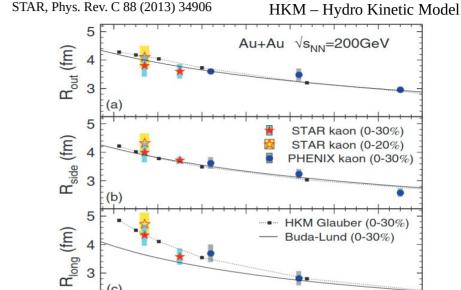


Figure: m_T dependence of 3-D source size using Kaon femtoscopy

8.0 m_{T} (GeV/c²)

0.8 0.6 0.4 0.2

0.5

0.6

Theory prediction of CF for $D\pi$ channels

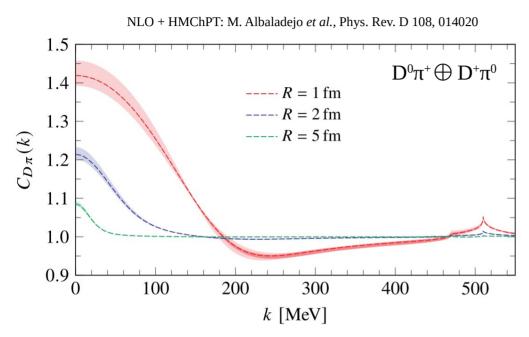


Figure: Correlation functions for $D\pi$ channels predicted for R=1, 2 and 5 fm sources represented by red, blue and green dashed lines respectively. Corresponding bands show uncertainties with 68% CL

→ Interaction in I = 3/2 sector (D⁰ π -) is weaker and repulsive

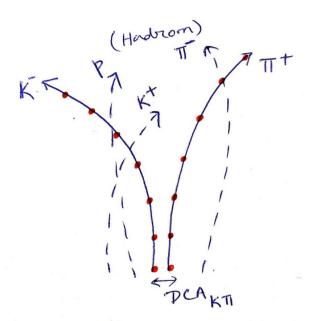
• Isospin combinations for $D\pi$ channels

$$egin{align} C_{D^+\pi^0} &= rac{2}{3}\,C_{3/2}^{D\pi} + rac{1}{3}\,C_{1/2}^{D\pi}, \ & \ C_{D^0\pi^+} &= rac{1}{3}\,C_{3/2}^{D\pi} + rac{2}{3}\,C_{1/2}^{D\pi}, \ & \ C_{D^0\pi^-} &= C_{3/2}^{D\pi}, \ \end{pmatrix}$$

- → Predicted CF for $D^0\pi^+$ and $D^+\pi^0$ channels considered only $I = \frac{1}{2}$ state
- → Depletion at k ~ 215 MeV for R = 1 fm source, produce due to presence of the lightest D_0^* state $[D_0^*(2135)]$
- → For R = 2 fm and 5 fm sources, the minimum is present but diluted

Correction of detector effects

1. Self correlation: Possible correlation between D^0 candidates and their daughters were removed


Hadron (chosen for pairing with D^0) track id \neq Track id of D^0 (π^+K^-)

2. Track splitting: Track splitting causes an enhancement of pairs at low relative pair momentum k^* . This enhancement is created by a single track reconstructed as two tracks, with similar momenta. Track splitting mostly affects identical particle combinations (here, $\pi_D^0 - \pi$ and $K_D^0 - K$), as one track may leave a hit in a single pad-row. Due to shifts of pad-rows, it can be registered twice. In order to remove split tracks, we applied following condition.

No. of hit points / Max no. of hit points > 0.51

Possible detector effects

3. Track merging:

Merging of tracks inside TPC

Approach 1:

- $\delta r(i)$ < mean TPC distance separation \rightarrow 'merged' hits
- \rightarrow $\delta r(i)$ distance between TPC hits of two tracks
- → Pair of tracks with fraction of merged hits > 5% were removed as 'merged tracks'
- → The technique was adopted from HBT approachApproach 2:
- → $\delta r(i) \le threshold \rightarrow 'merged' hits$

Approach 3:

- **SE/ME of \Delta \eta vs \Delta \phi distribution** → no dip around 0 → negligible effect of merged tracks
- With variation of merging cuts → Negligible effect on correlation value, no correction applied

Selection criteria

Event cuts

- $|V_{z}| < 6.0$ cm.
- $|V_z V_z^{VPD}| < 3.0 \text{ cm.}$
- $|V_{y}| > 1.0e^{-5}$ cm.
- $|V_v| > 1.0e^{-5}$ cm.
- $\sqrt{[(V_x)^2 + (V_y)^2]} \le 2.0$

Track cuts

- $p_T > 0.5 \text{ GeV/c}$
- |dca| > 0.0050 cm.
- nHitsFit >= 20
- $|\eta| <=1.0$

PID cuts for π , K & p

- $|n\sigma_{\pi}| < 3.0$
- $|n\sigma_{\rm K}| < 2.0$
- $|n\sigma_p| < 2.0$
- $|\frac{1}{\beta} \frac{1}{\beta_n}| < 0.03$
- $|\frac{1}{\beta} \frac{1}{\beta_{\kappa}}| < 0.03$
- $\left| \frac{1}{\beta} \frac{1}{\beta_p} \right| < 0.03$
- $\frac{nHitsFit}{nHitsFitMax} > 0.51$