

Quark Matter and Nuclear Astrophysics: recent developments

Zimányi Winter school, Budapest, Hungary 03 December 2024

05 December 2024

Tyler Gorda Goethe University Frankfurt

Understanding the phase diagram of QCD

Compressed Baryonic Matter (CBM) experiment

Understanding the phase diagram of QCD

Borsanyi, Fodor, Hoelbling, Katz, Krieg, Szabo Phys. Lett. B 370 (2014), Gardim, Giacalone, Luzum, Ollitrault, Nature Physics 16, 615-619 (2020)

Lattice calculations at high-T directly tell us the EoS; can compare to hadronic/partonic calculations

Compressed Baryonic Matter (CBM) experiment

Understanding the phase diagram of QCD

Annala, TG, Hirvonen, Komoltsev, Kurkela, Nättilä, Vuorinen Nat. Comm. 14 (2023)

At *T* = 0, no lattice, but we have **astrophysics**; and calculations in **nuclear and particle theory**

Compressed Baryonic Matter (CBM) experiment

T = 0 is a synthesis of theory and experiment

What is a Neutron Star?

Collapsed remnant of dead stars, held from collapse by **repulsive** nuclear/QCD forces

Cleanest probes of structure/bulk properties when they are in binary system with a companion

Mass $\leq 2M_{\odot}$, 11 km $\leq R \leq 13$ km, $T \leq \text{keV} \sim 10^7$ K.

Masses

Deformabilities

Radii, compactness

Demorest, Pennucci, Ransom, Roberts, Hessels. Nature 467 (2010) pp. 1081-1083; Antoniadis+ Science 340 (2013) p. 6131; Cromartie+ (NANOGrav). Nature Astron. 4.1 (2019). E. Fonseca+ Astrophys. J. Lett. 915.1 (2021) Abbott+ (LIGO Scientific, Virgo) PRL 119 (2017); PRL 121 (2018); PRX 9 (2019). Miller+ Astrophys. J. Lett. 918.2 (2021), p. L28. Riley+ Astrophys. J. Lett. 918.2 (2021) p. L27.

Masses

Radii, compactness

Demorest, Pennucci, Ransom, Roberts, Hessels. Nature 467 (2010) pp. 1081-1083; Antoniadis+ Science 340 (2013) p. 6131; Cromartie+ (NANOGrav). Nature Astron. 4.1 (2019). E. Fonseca+ Astrophys. J. Lett. 915.1 (2021) Abbott+ (LIGO Scientific, Virgo) PRL 119 (2017); PRL 121 (2018); PRX 9 (2019). Miller+ Astrophys. J. Lett. 918.2 (2021), p. L28. Riley+ Astrophys. J. Lett. 918.2 (2021) p. L27.

INVISIBLE SURFACE SPIN AXIS

OBSERVER

Deformabilities

Radii, compactness

Demorest, Pennucci, Ransom, Roberts, Hessels. Nature 467 (2010) pp. 1081-1083; Antoniadis+ Science 340 (2013) p. 6131; Cromartie+ (NANOGrav). Nature Astron. 4.1 (2019). E. Fonseca+ Astrophys. J. Lett. 915.1 (2021)

Abbott+ (LIGO Scientific, Virgo) PRL 119 (2017): PRL 121 (2018): PRX 9 (2019). Miller+ Astrophys. J. Lett. 918.2 (2021), p. L28. Riley+ Astrophys. J. Lett. 918.2 (2021) p. L27.

Radii, compactness

Demorest, Pennucci, Ransom, Roberts, Hessels. Nature 467 (2010) pp. 1081-1083; Antoniadis+ Science 340 (2013) p. 6131; Cromartie+ (NANOGrav). Nature Astron. 4.1 (2019). E. Fonseca+ Astrophys. J. Lett. 915.1 (2021)

Abbott+ (LIGO Scientific, Virgo) PRL 119 (2017): PRL 121 (2018): PRX 9 (2019). Miller+ Astrophys. J. Lett. 918.2 (2021), p. L28. Rilev+ Astrophys. J. Lett. 918.2 (2021) p. L27.

Use these data in place of lattice results

Quark Matter and Nuclear Astrophysics: recent developments | Tyler Gorda (he/him) | 10 03.12.2024

Different inputs constrain different parts of the EOS

Perturbative QCD

Hadronic matter: Chiral EFT

Describes massive nucleons interacting via pion exchange and contact interactions. EFT terms dictated by chiral symmetry

Calibrated by nuclear data

Uncertainty estimates by e.g. Gaussian process regression and naturalness arguments

Drischler, Holt, Wellenhofer, Ann.Rev.Nucl.Part.Sci. 71 (2021) 403-432 Drischler, Furnstahl, Melendez, Phillips PRL 125 (2020) 20, 202702

Quark matter: perturbative QCD (+recent developments)

Describes (nearly) massless quarks, gluons interacting. Quarks are approximately free, up to [O(20%)] perturbative corrections

Calibrated by collider data.

TG, Kurkela, Paatelainen, Säppi, Vuorinen, PRL 127, 162003 (2021), PRD 104, 074015 (2021)

Quark matter: perturbative QCD (+recent developments)

Describes (nearly) massless quarks, gluons interacting. Quarks are approximately free, up to [O(20%)] perturbative corrections

Calibrated by collider data.

In last few years, the **full structure of the N3LO pressure** computation has been made clear

TG, Kurkela, Paatelainen, Säppi, Vuorinen, PRL 127, 162003 (2021), PRD 104, 074015 (2021), TG, Paatelainen, Säppi, Seppänen PRL 131 (2023) Soft: 2 interacting gluons screened at LO Mixed: 1 gluon screened at NLO Hard: gluons are unscreened

Hard

Mixed

Figure: Saga Säppi

Soft

Quark matter: perturbative QCD (recent developments)

TG, Paatelainen, Säppi, Seppänen PRL 131 (2023)

Soft and *Mixed* contributions now computed. Result is extremely <u>well converged</u> Soft: 2 interacting gluons screened at LO Mixed: 1 gluon screened at NLO Hard: gluons are unscreened

Hard

Mixed

Figure: Saga Säppi

Soft

Quark matter: perturbative QCD (recent developments)

Quark matter: perturbative QCD (recent developments)

Machine-learning based Bayesian interpretation of these uncertainties. Perturbative series modeled as draws from a statistical model of convergent series, trained with available terms

Cacciari & Houdeau, JHEP 09, (2011), M. Bonvini, Eur. Phys. J. C 80, 989 (2020), Duhr, Huss, Mazeliauskas, Szafron, JHEP 122, (2021)

TG, Komoltsev, Kurkela, Mazeliauskas, JHEP 06 (2023)

Favors better converged X

Chiral EFT + pQCD + Thermodynamics constrain extreme EoSs

1. Stability

$$\partial^2_{\mu}\Omega(\mu) \leq 0 \implies \partial_{\mu}n(\mu) \geq 0$$

2. Causality

$$c_{s}^{-2} = \frac{\mu}{n} \frac{\partial n}{\partial \mu} \ge 1 \implies \partial_{\mu} n(\mu) \ge \frac{n}{\mu}$$

3. Consistency

$$\int_{\mu_{CET}}^{\mu_{QCD}} d\mu n(\mu) = p_{QCD} - p_{CET}$$
 Fixed!
"integral constraints"

Komoltsev and Kurkela, PRL 128 (2022)

Chiral EFT + pQCD + Thermodynamics constrain extreme EoSs

Region of (*ε*, *p*) at fixed *n* constrained by general principles

Komoltsev and Kurkela, PRL 128 (2022)

Hadronic and Quark matter are different

Quark matter is **approximately conformal (scale-invariant)**, hadronic matter is **non-conformal**. This leads to different thermodynamics:

ADAPTED from Fujimoto, Fukushima, McLerran, Praszalowicz, PRL 129 (2022) 25, 252702

Annala, TG, Kurkela, Nättilä, Vuorinen Nat. Phys. 16 (2020)

A new measure of conformality

 Δ and γ are both fixed for a conformal EoS, but for a non-conformal EOS they can still briefly pass through their conformal values.

Putting everything together...

Bayesian EoS inference setup

03.12.2024 | Quark Matter and Nuclear Astrophysics: recent developments | Tyler Gorda (he/him) | 23

TG, Komoltsev, Kurkela, ApJ 950 (2023)

Bayesian EoS inference setup

Weight of (ϵ, p) points at $n = 10n_s$

03.12.2024 | Quar

Stiff→soft transition, with softening driven by QCD input

TG, Komoltsev, Kurkela, ApJ 950 (2023)

Annala, TG, Kurkela, Nättilä, Vuorinen Nat. Phys. 16 (2020), Altiparmak, Ecker, Rezzolla, ApJ.Lett. 939 (2022); Ecker & Rezzolla, ApJ.Lett. 939 (2022); Fujimoto, Fukushima, McLerran, Praszalowicz, PRL 129 (2022); Marczenko, McLerran, Redlich, Sasaki, PRC 107 (2023);

Stiff EOSs at TOV inconsistent with pQCD at higher densities

More informed QCD input yields robust posteriors

TG, Komaltsev, Kurkela, Margueron, Somasundaram, Tews PRD 109 (2024);

Inconsistent with pQCD at large densities

03.12.2024 | (Public script: 10.5281/zenodo.10412734

Clear non-conformal→conformal transition within the cores of stable neutron stars

Annala, TG, Hirvonen, Komoltsev, Kurkela, Nättilä, Vuorinen Nat. Comm. 14 (2023)

P(conformal) = 88% (75%) for the parametric (GP) approach, for maximally massive stars

Criterion is much stricter than older γ analysis. (Would have found 99.8% previously.)

> See also: Han, Huang, Tang, Fan, Science Bulletin, 68, 9 (2023)

See also

Annala, TG, Kurkela, Nättilä, Vuorinen Nat. Phys. 16 (2020), Altiparmak, Ecker, Rezzolla, ApJ.Lett. 939 (2022); Ecker & Rezzolla, ApJ.Lett. 939 (2022); Fujimoto, Fukushima, McLerran, Praszalowicz, PRL 129 (2022); Marczenko, McLerran, Redlich, Sasaki, PRC 107 (2023);

Nuclear models don't show conformal transition

Number of degrees of freedom consistent with deconfined quark matter

Annala, TG, Hirvonen, Komoltsev, Kurkela, Nättilä, Vuorinen Nat. Comm. 14 (2023)

Annala, TG, Kurkela, Nättilä, Vuorinen Nat. Phys. 16 (2020)

Takeaways

 Robust thermodynamic evidence for hadronic → quark transition probed within the most massive neutron stars.

Evidence for cold quark matter created in nature.

Astrophysics + nuclear-theory + particle-theory input are all essential in this conclusion

- Improvements in pQCD calculations, analysis, and input in EOS inference
 - Statistical analysis of pQCD truncation errors favors higher pressures, which are better converged
 - Soft + mixed pQCD EOS tightly converged; hard sector remains
 - Using additional pQCD cs2 information yields robust EOS posteriors

What's next?

? Other lines of evidence of deconfined behavior?

- → At high-T, thermodynamics is just one approach
- ➔ Recently improved transport calculations

Cruz Rojas, TG, Hoyos, Jokela, Järvinen, Kurkela, Paatelainen, Säppi, Vuorinen PRL 133 (2024); Hernandez, Manuel, Tolos PRD 109 (2024)

Casalderrey-Solana, Mateos, Sanchez-Garitaonandia 2210.03171

Bulk viscosity from weak processes

? Robust (post-)merger signals of deconfinement?

MHz gravitation waves from bubble nucleation in remnant?

? Can **similar analyses** be performed at **nonzero** *T*, to apply statistical EoS inference throughout the phase diagram?

What's next?

? Other lines of evidence of deconfined behavior?

- → At high-T, thermodynamics is just one approach
- ➔ Recently improved transport calculations

Cruz Rojas, TG, Hoyos, Jokela, Järvinen, Kurkela, Paatelainen, Säppi, Vuorinen PRL 133 (2024); Hernandez, Manuel, Tolos PRD 109 (2024)

Casalderrey-Solana, Mateos, Sanchez-Garitaonandia 2210.03171

Bulk viscosity from weak processes

? Robust (post-)merger signals of deconfinement?

MHz gravitation waves from bubble nucleation in remnant?

? Can similar analyses be performed at nonzero T, to apply statistical EoS inference throughout the phase diagram?
Thanks for your attention!

Here there be details...

Robust to interpolants

Annala, TG, Hirvonen, Komoltsev, Kurkela, Nättilä, Vuorinen Nat. Comm. 14 (2023)

Effect from combined X-ray, QCD input

Annala, TG, Hirvonen, Komoltsev, Kurkela, Nättilä, Vuorinen Nat. Comm. 14 (2023)

The *abc* model of convergent series

Normalize sequence by LO term

$$\delta_k \equiv \frac{\alpha^k O_k}{O_0} \quad (\delta_0 = 1)$$

Model assumes δ_k is bounded by some geometric series defined by (a, b, c)

 $(-c+b)a^k < |\delta_k| < (c+b)a^k,$

Flat likelihoods taken for δ_k satisfying this inequality. (*Model also specifies a prior for *a*, *b*, *c* which favor smaller values of |a|, b, c)

The HARD diagrams

Soft: 2 interacting gluons screened at LO Mixed: 1 gluon screened at NLO Hard: gluons are unscreened ······

Gaussian Process regression priors

- Follow Landry & Essick Phys. Rev. D 99 (2019) and implement a Gaussian Process Regression in an auxiliary variable $\varphi(n) = -\ln(c_s^{-2}(n) - 1)$, but as function of n
- Use hierarchical model, for wide range of behavior

$$\begin{split} \varphi(n) &\sim \mathcal{N}\bigg(-\ln\big(\bar{c}_{s}^{-2}-1\big), \mathcal{K}(n,n')\bigg) \\ \mathcal{K}(n,n') &= \eta e^{-(n-n')^{2}/2\ell^{2}} \\ \bar{c}_{s}^{2} &\sim \mathcal{N}(0.5, 0.25^{2}), \\ \ell &\sim \mathcal{N}(1.0n_{s}, (0.2n_{s})^{2}), \\ \eta &\sim \mathcal{N}(1.25, 0.25^{2}). \end{split}$$

TG, Komoltsev, Kurkela, ApJ 950 (2023) https://github.com/OKomoltsev/QCD-likelihood-function

Details of statistical pQCD treatment don't affect NS inference

TG, Komoltsev, Kurkela, Mazeliauskas JHEP 06 (2023)

Komoltsev, Somasundaram, TG, Kurkela, Margueron, Tews PRD 109 (2024)

Komoltsev, Somasundaram, TG, Kurkela, Margueron, Tews PRD 109 (2024)

Komoltsev, Somasundaram, TG, Kurkela, Margueron, Tews PRD 109 (2024)

Komoltsev, Somasundaram, TG, Kurkela, Margueron, Tews PRD 109 (2024)

Examining $n_{\text{term}} = n_{\text{TOV}}$: Many EOSs have high I_{pQCD}

Komoltsev, Somasundaram, TG, Kurkela, Margueron, Tews PRD 109 (2024)

Allowed extensions for stiff EoSs have tightly constrained region beyond n_{TOV}

Extending stiff EoSs indeed show strong, prolonged softening

Komoltsev, Somasundaram, TG, Kurkela, Margueron, Tews PRD 109 (2024)

Takeaway: Softening before n_{TOV} OR Strong, prolonged softening just after, followed by $c_s^2 \approx 1$

EoS extensions for less extreme pressures

Komoltsev, Somasundaram, TG, Kurkela, Margueron, Tews PRD 109 (2024)

