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Motivation & Goals

@® Interest in rotating QCD matter. (Rotating QGP in heavy-ion collisions).

®Systems under rigid rotation are
coming from superluminal region.

known to be problematic. Specially it unbounded! They can lead to artitacts

Davies, Dray, Manogue 1996]

@ Solution: Place the system in a cylinder and cut the spacetime before the speed-of-light surface. [Ambrus,

Winstanley 2016]

@® Works in Effective models:

Formally bounded. Use boundary conditions: MIT, spectral... [Chernodub, Gonyo 2016] [Singha, Ambrus,

Chernodub 2024]

Unbounded [Chen, Fukushima, Huang, Mameda 2016] [Jiang, Liao 2016]

Both approaches seem to give similar results!

@® Typically assume constant value of singlet meson o or local value without gradients.
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Rotating states: Rigid Rotation vs. Tolman-Ehrenfest

® The equilibrium rigid rotating state is defined through the following density operator

PRR — €

—Bo(H—QJ?—puoQ)

® Eventually, the evaluation of expectation values require to perform the infinite sum over the

angular momentum eigenvalues, which is computationally demanding.

@ It has been shown that the su

(captured by the

m can be rearranged into the effect of classical rotation

olman-Ehren

est law) plus quantum corrections.

® The Tolman-Ehrenfest contribution can be efficiently accounted for with the following

density operator:

where f = fy/I" y—>» T =17, =

PTE — €

—B-P+BouoQ

1
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Rotating states: Tolman-Ehrenfest

®

® The Tolman-Ehrenfest contribution can be efficiently accounted for with the following

density operator:

TR = e—ﬁ'ﬁ-l-ﬁouo@

1
aﬂd //t=F//tO= Iu

where 8= B,/T yW—» T=IT,= L L
0 0 \/1_sz2 \/1_sz2




Linear Sigma Model coupled to Quarks

® Model proposed to describe the low-energy properties of quark and mesonic degrees of

freedom in a unified way.

® The model is defined through the Lagrangian: £ = Ly + L, where

1 — |2z

Ly = 5000 0 + 8,7 'F) —U(0,7)  Lq=1 |5 d —g(o+iy
— A 2 —2 2\2

U(U,W)ZZ( + 7% —w°)° — ho

™ 7T : Pseudoscalar triplet of the pion fields
"™ 0 : Scalar singlet meson fields.

- . Up and down quarks combined into a SU(2) fermion doublet.




Linear Sigma Model coupled to Quarks

1

® The thermodynamics of the system is encoded in the grand canonical potential ® = —— 1n Zx

B

where 3 is the inverse temperate and Zg the Euclidean partition function:

ZE = /DiﬁDEDJDwe_ Jo dr [p 2L

® We take the mean-field approximation for the mesonic fields, i.e. we study the

expectation value of 6 and 7 while neglecting their quantum fluctuationss—>» Saddle point
approximation for mesonic fields.

Zg.f. __ /DwDEB_ f05 dr f./\/l d3a;£E

From now on, o6 and 7 denote the expectation values of the fields in a given

(rotating) state (to be defined later).



Linear Sigma Model coupled to Quarks

1

® The thermodynamics of the system is encoded in the grand canonical potential ® = —— 1n Zx
in the mean-field approximation we have B
1
o™t (o, 7) = / d°xLy — = In Zp
M B

® The fermionic contribution to @ contains only the quark Lagrangian, which is “free”, and can

be evaluated. At finite temperature and chemical potential, the contribution reads:

1 — 3 —B(E+sp)
- 5 Zp = 2NfNZ/d /2w3ﬁ (1+e )

c=+

-

where £ = \/p2 + (go)*.



Evaluating the Grand Potential and the Fermion Condensate (yy)g , 7

in the Tolman-Ehrenfest state

® The expectation values in the Tolman-Ehrenfest state are effectively given by the result in

the absence of rotation under the replacements:

1,

\/1 — Q2p? \/1 — Q2p?

® Theretfore, the grand canonical potential and the fermion condensate become

1 A -
-t — /M d°z 5 o0M o — 2(02 — v2)2 + ho WWTE — 2Nch go
) - 1
Fd3p —Bol' " (E+<po) X Z / 3 I'—1(E—
—2NyNe ; / (27)35, In (1 +e ) ) (2m)3E efol ™ (Bmepo) 41

The fermionic contribution to ® as well as the fermion

condensate are obtained for constant 6. Understand as proxy.



Mean Field Approximation

® We shall solve the 6 eom under three approximations of increasing rigor:

o(p) — & Takes a global (constant) averaged value over the size of the system. Under
this assumption, the extremization of the grand canonical potential results into:

N@ )7 =h— gy [ dpp(it) (o)

_lo(p) ~ 0 The singlet meson is slowly varying along the transverse direction.

No? 4+ 7% —v?) o0 =h— g)(p)

lo(p) # 0 The general case where the gradients in the transverse directions are taken

INto account.

O+ Ao®+ 7 —v°)] o =h— g{yy)(p)
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V1 —p2Q2

I =

CASE lll: Fully-varying local ([ Jo # 0) o

) = 2NN
—Q°T*(T* — 1)0f0 — Q°T*(3T° — 1)dro Woirs T

B 1
+A0(0® = v?) = h— g(P)). 3 [ erppaemrs

1

® The solution of the differential equation is subject to initial/boundary condition. Any choice

of boundary conditions satisfy the variational principle §® = 0. Space of solutions ~ R?.
s there a sensible choice of boundary conditions??

@® o obeys a differential equation and ought to be smooth in p! Can we have a first order
ohase transition at all??



I =

1
V1 —p2Q2

CASE lll: Fully-varying local ([ Jo # 0) o

) = 2NN
—Q°T*(T* — 1)0f0 — Q°T*(3T° — 1)dro Woirs T

B 1
FAo(0® —v?) = h— g (). < 2 | aoE e

T1

® Sensible choice of boundary conditions? Study the differential equation around
the critical points: the axis of rotationI' =1 (p = 0) and the firewall ' = oo (p = QD

oc(I' = 1) = 04zis + C1log(1 —T) +O(1 - T)
h _jlogl'\ Co logI'
U(F>> ].):Cl (1 | 20'0 FQ ) | F2 | O( F4 )

@ The solution diverges at the light cylinder unless C; = 0. ho(T2 2 ~1
. Now the space of solutions ~ R. g0 = 5 ( é) | 27;)2)




I

1
1=

CASE lll: Fully-varying local ([ Jo # 0) o

—2N¢Ne ) / (

C—L

@ Sensible choice of boundary conditions?

canonical potential) near the firewall

Fd3p —1
—Bol' " (E+spo) | —
2NfNe / g (14 1)) = —

1
q)m.f. _ / de
M .
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ho

307212 12

Evaluate the pressure (or grand

15u*)*

O(g*a*T")
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| =
V1 —p2Q2

CASE lll: Fully-varying local ([ Jo # 0) o

@® Sensible choice of boundary conditions? Step 2: Evaluate the pressure (or grand
canonical potential) near the firewall
NN,

['d’p —BoT Y (E+<po)) _ A 22 2 A\ 14
2NNy [ g (1+e ) = T (T T 4 30m* T2 i? 4 15T

C—L

® The first term is infinite, but independent of N¢Ne o
boundary conditions. It contributes the same 1972 go

2F2(7T2T2 + 3,U2) + O(g4J4FO)
given a thermodynamic state (7, u, €2) .

®The second term is negative semi-definite! ®

Any solution with a non-zero value of ¢ at the (In a finite size system that does not reach the

light cylinder is thermodynamically infinitely ight cylinder, a different boundary condition may

oe imposed)

penalised.



I =

1

V1 — p2Q2

(T p, ©2)

CASE llI: Fully-varying local ([ Jo # 0) o

— (100, 0, 100) M eV

awis/f = 1.0

aa:is/f = 0.9
axis/fﬂ = 0.8
axz's/fyr = 0.7
axis/f = 0.6
axis/f = 0.5

aa:is/f = 0.4
aa:z's/fyr =0.3
aazis/f = 0.2

axis/f =01

aa:is/f = 0.0
axz's/f = 0.7

(T, 1, §2) =

(100, 0, 100) MeV

10
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CASE lll: Fully-varying local ([ Jo # 0) o

® To sum up: Given a thermodynamic state (7, u, ) solve the differential equation

_ "Z’(p = 2N NCQO'
1\ d d ; ( >TE f

p— +AMo? —v?)| o =h—g{¥y) / d°p !
. pdp dp ] . CZI (27)3 E ePol " H(E—suo) + ]
subject to the boundary conditions and . We obtain o(p) and in

particularo, ... = o(p — 0).

X1S

@® The solution to the boundary value problem may not be unique! In such case, we u

Se

the free energy to discriminate the thermodynamically favoured solution. This is how the
order first transition is realised in this setup.

irst



I

1

B \/1 _ngz

® The system is either in a chirally restored phase, where ¢ is small everywhere, orin a

CASE lll: Fully-varying local ([ Jo # 0) o

mixed inhomogeneous phase, where it is chirally broken in the region close to the rotation

axis and chirally restored close to the light-cylinder. Each phase identified by ¢,

0.2¢

0.0

(1, ) = (0,80) MeV

s T'— 79 M eV
e T'— 101 M eV
e T'— 110 M eV
T'—= 115 M eV
T—=119 MeV
T=122 MeV
T—=126 MeV
T—=133 MeV
s ' — 147 M eV

—T'— 163 M eV

0.00

0.25

0.75 1.00

X1S

(1, ) = (0,80) MeV

T — 79 M eV
e ' — 101 M eV
T—=110 MeV
T— 115 MeV
T—=119 MeV
T=122 MeV
T—126 MeV
w———T'— 133 M eV
e ' — 147 M eV
e ' — 163 M eV
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CASE lll: Phase Diagram

® The inner region corresponds to the mixed inhomogeneous phase while in the outer
region the system is in the chirally restored phase.

®@The critical point is follows a non-monotonic trajectory in phase space as a function of pu.

® There is a critical point at zero temperature.

@At small T and small u, phase transition driven by angular velocity only. Quantum
corrections will be important.
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® In the unbou
conditions for t

vanish on the firewall. T

nded system, a natural boundary appears, along w

ne radia

Discussion & Outlook

ith natural

dependent gap equation. They always en

ne system shields against the superluminal

orce that t
region.

ooundary

ne singlet meson

® The approximations that o is constant or gradients are neglected are only valid for small

rotation.

® The phase of the system can be labelled by the value of 6 on axis.

®The critical endpoint follows a non-monotonic trajectory in phase space as a function of the

chemical potential u.

Work with the rigid rotating state, i.e. include quantum corrections to Tolman-Ehrenfest

Obtain free energy and fermion condensate for p-dependent o.

Extend these results to the PLSM,,.






CASE |: Global value of ¢ CASE ll: Local o ([ ]o =~ O)

2 _

\@* —v")T =h—g— [ dppl)(p)  Mo*(p) = v’lo(p) = h— gld)



CASE |: Global value of ¢ CASE ll: Local o ([ ]o =~ O)

N>~ )0 = h— gy [ dop@0)(e)  No*(p) = vPlo(e) = h— g(o¥
® As we approach the light cylinder, the FC diverges if the singlet attains a finite value there:
2 2
® o (respectively ) need vanish as it reaches the light cylinder to solve the gap equation:
o > h , 00
2 (7;02 : 2‘;32) InTx — v2\ 7P) = Ty = oo Tae?




CASE I: Global value of o CASE II: Local o (

~ 838’ 8)) o @ (T 1) = (200,0) MeV
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CASE I: Global value of o

= [ doo) (0

® The global value of 6 is a function of the combination Q2R (only true for the Tolman-
Ehrenfest state). Predicts o(p) = 0 if the system extends to the light-cylinder (i.e. R = Q7).

\No® —vi)o=h—g

n =0
1.00} ‘ 1.00¢
0.75} 0.75}
Y @ 7 20Mev
y @ 7-40MeV wfo 50 | B 7- 40 sz
° @ T-80MeV @ 7- 380 MeV
2 T=100MeV 025
i T=120MeV |, PLY
0.25 V T:13OM§V
> T—=146 MeV
4 T—=200MeV W)
0.00 L . . . 0.00¢t
0.00 0.25 0.50 0.75 1.00

R



CASE ll: Local o ([ ]o =~ O)

Mo*(p) —v7]o(p) = h — g{¥i)

® The global value of 6 is a function of the combination p€2 (only true tor the Tolman-
Ehrenfest state). Allows for inhomogeneous phases. Predicts first order phase transitions at a
finite distance from the rotation axis.

uw=0MeV

1 . OO B et 1 . OO i
Q T-=20MeV
ARRNRNRRNRNNARRY ”ﬂmmm%%% ! T—=40 MeV
T=60MeV

0.75+ 0.75}

(S \l‘\‘
E 0.50 5 E 0.50 B
0.25+ 0.25+

pf)



CASE | vs. CASE |

® We compare the global solution & (Model 1) with the value of the local 6 (Model 2)
averaged over the size of the system R (*Model 2%*).

1.00 ¢ —mo e e,

0;75" ..~~‘~‘ %
— “’ ‘:
< 0500 e Nodel 1 :

—--*xModel 2 * . :

— Model 2 ‘\‘ :

0.257 T [MeV| ‘. '

o T — 8 . '

—T: 120 ~~~~:.

OJDO_W ! ! | |
0.00 0.25 0.50 0.75 1.0C

QR

® Agreement only before the phase transition. Transition happens “earlier” in Model 2.

—~J "~ e, . ee==Model 1
0.8 : —rModel 2
: : e\ 0de] 2
: : T [MeV |
.y : : I
T~ : .
> 04l : :
. taee -
"---211311111\\5‘
0.0 ' ' I ¥
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CASE Il vs. CASE I

@It is clear from the differential equation
that the magnitude of the gradient terms

is controlled by the angular ve
Theretore, cases Il and lll shou
only tor small angular velocity.

ocity €.

d agree

— Q*T*(I'* — 1)070 — Q°T°(3I'° — 1)0ro

+Ao(0® —v7) = h — g(¢)

o/f.

0.8¢

0.6

(1; 1) = (40,260)|MeV]

B Model 2 VO
Model 3 :

() =10 MeV
() =30 MeV
() =50 MeV
() =70 MeV
() =90 MeV

© 0 0 O O

0.75 1.00
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