

Finanțat de **Uniunea Europeană**

NextGenerationEU

Firewall Boundaries for Rotating Quark Matter in LSM_q

Zimányi School 2024. Winter Workshop on Heavy Ion Physics

Sergio Morales Tejera Victor E. Ambrus & Maxim N. Chernodub

3rd December 2024

Motivation & Goals

- Interest in rotating QCD matter. (Rotating QGP in heavy-ion collisions).
- Systems under rigid rotation are known to be problematic. Specially if unbounded! They can lead to artifacts coming from superluminal region. [Davies, Dray, Manogue 1996]
- Solution: Place the system in a cylinder and cut the spacetime before the speed-of-light surface. [Ambrus, Winstanley 2016]
- Works in Effective models:
 - Formally bounded. Use boundary conditions: MIT, spectral... [Chernodub, Gonyo 2016] [Singha, Ambrus, Chernodub 2024]
 - Unbounded [Chen, Fukushima, Huang, Mameda 2016] [Jiang, Liao 2016]
- Both approaches seem to give similar results!
- \odot Typically assume constant value of singlet meson σ or local value without gradients.

Financial support by The European Union NextGenerationEU trough the grant No. 760079/23.05.2023, funded by the Romanian ministry of research, innovation and digitalization through Romania's National Recovery and Resilience Plan, call no. PNRR-III-C9-2022-18, is gratefully acknowledged.

Rotating states: Rigid Rotation vs. Tolman-Ehrenfest

- The equilibrium **rigid rotating state** is defined through the following density operator $\hat{\rho}_{RR} = e^{-\beta_0(\hat{H} - \Omega \hat{J}^z - \mu_0 \hat{Q})}$.
- Eventually, the evaluation of expectation values require to perform the infinite sum over the angular momentum eigenvalues, which is computationally demanding.
- It has been shown that the sum can be rearranged into the effect of classical rotation (captured by the Tolman-Ehrenfest law) plus quantum corrections.
- The **Tolman-Ehrenfest** contribution can be efficiently accounted for with the following density operator:

$$\hat{\rho}_{TE} = e^{-\beta \cdot \widehat{P} + \beta_0 \mu_0 \widehat{Q}}$$

where $\beta = \beta_0 / \Gamma$ \longrightarrow $T = \Gamma T_0 = \frac{T_0}{\sqrt{1 - \Omega^2}}$

$$\frac{\mu_0}{1^2 \rho^2} \quad \text{and} \quad \mu = \Gamma \mu_0 = \frac{\mu_0}{\sqrt{1 - \Omega^2 \rho^2}}$$

Rotating states: Rigid Rotation vs. Tolman-Ehrenfest

- The equilibrium rigid rotating state is defined through the following density operator $\hat{\rho}_{RR} = e^{-\beta_0(\hat{H} - \Omega \hat{J}^z - \mu_0 \hat{Q})}$
- Eventually, the evaluation of expectation values require to perform the infinite sum over the angular momentum eigenvalues, which is computationally demanding.
- It has been shown that the sum can be rearranged into the effect of classical rotation (captured by the Tolman-Ehrenfest law) plus quantum corrections.
- The **Tolman-Ehrenfest** contribution can be efficiently accounted for with the following density operator:

$$\hat{\rho}_{TE} = e^{-\beta \cdot \widehat{P} + \beta_0 \mu_0 \widehat{Q}}$$

where $\beta = \beta_0 / \Gamma$ \longrightarrow $T = \Gamma T_0 = \frac{T_0}{\sqrt{1 - \Omega^2}}$

$$\frac{\mu_0}{2^2 \rho^2} \quad \text{and} \quad \mu = \Gamma \mu_0 = \frac{\mu_0}{\sqrt{1 - \Omega^2 \rho^2}}$$

Linear Sigma Model coupled to Quarks

- freedom in a unified way.
- The model is defined through the Lagrang

$$\mathcal{L}_{M} = \frac{1}{2} (\partial_{\mu} \sigma \partial^{\mu} \sigma + \partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi}) - l$$
$$U(\sigma, \vec{\pi}) = \frac{\lambda}{4} (\sigma^{2} + \vec{\pi}^{2} - v^{2})^{2} - h\sigma$$

 $\vec{\pi}$: Pseudoscalar triplet of the pion fields $\rightarrow \sigma$: Scalar singlet meson fields. $\rightarrow \psi$: Up and down quarks combined into a SU(2) fermion doublet.

O Model proposed to describe the low-energy properties of quark and mesonic degrees of

vian:
$$\mathcal{L} = \mathcal{L}_M + \mathcal{L}_q$$
, where
 $\mathcal{L}(\sigma, \vec{\pi}) = \mathcal{L}_q = \vec{\psi} \left[\frac{i}{2} \overleftrightarrow{\partial} - g(\sigma + i\gamma^5 \vec{\tau} \cdot \vec{\pi}) \right]$

Parameters matched to zerotemperature results: Pion decay constant: 0.093 GeV Pion mass: 0.138 GeV Constituent quark mass: 0.307 GeV Mass of sigma meson: 0.600 GeV

Linear Sigma Model coupled to Quarks

where β is the inverse temperate and \mathcal{Z}_E the Euclidean partition function:

$$\mathcal{Z}_E = \int \mathcal{D}\psi \mathcal{D}\overline{\psi} \mathcal{D}\sigma \mathcal{D}\vec{\pi} e^{-\int_0^\beta d\tau \int_{\mathcal{M}} d^3x \mathcal{L}_E}$$

We take the mean-field approximation for the mesonic fields, i.e. we study the approximation for mesonic fields.

$$\mathcal{Z}_E^{\mathrm{m.f.}} = \int \mathcal{D}\psi \mathcal{D}\overline{\psi} e^{-\int_0^\beta d\tau \int_{\mathcal{M}} d^3x \mathcal{L}_E}$$

(rotating) state (to be defined later).

 \odot The thermodynamics of the system is encoded in the grand canonical potential $\Phi=-rac{1}{eta}\ln\mathcal{Z}_E$

expectation value of σ and $\vec{\pi}$ while neglecting their quantum fluctuations \longrightarrow Saddle point

From now on, σ and $\vec{\pi}$ denote the expectation values of the fields in a given

Linear Sigma Model coupled to Quarks

• The thermodynamics of the system is encoded in the grand canonical potential $\Phi = -\frac{1}{\beta} \ln \mathcal{Z}_E$ in the mean-field approximation we have

$$\Phi^{\mathrm{m.f.}}(\sigma,\vec{\pi}) = \int_{\mathcal{M}} d^3 x \mathcal{L}_M - \frac{1}{\beta} \ln \mathcal{Z}_D$$

igodot The fermionic contribution to Φ contains only the quark Lagrangian, which is "free", and can be evaluated. At finite temperature and chemical potential, the contribution reads:

$$-\frac{1}{\beta}\ln \mathcal{Z}_D = -2N_f N_c \sum_{\varsigma=\pm} \int_{\mathcal{M}} d^3x \int \frac{d^3p}{(2\pi)^3\beta} \ln\left(1 + e^{-\beta(E+\varsigma\mu)}\right)$$

where
$$E = \sqrt{p^2 + (g\sigma)^2}$$
.

Evaluating the Grand Potential and the Fermion Condensate $\langle \bar{\psi}\psi \rangle_{\Omega,\mu,T}$ in the Tolman-Ehrenfest state

• The expectation values in the Tolman-Ehrenfest state are effectively given by the result in the absence of rotation under the replacements: $T = \Gamma T_0 = \frac{T_0}{\sqrt{1 - \Omega^2 \rho^2}}$ and $\mu = \Gamma \mu_0 = \frac{\mu_0}{\sqrt{1 - \Omega^2 \rho^2}}$

• Therefore, the grand canonical potential and the fermion condensate become

Mean Field Approximation

- \odot We shall solve the σ eom under three approximations of increasing rigor:
- this assumption, the extremization of the grand canonical potential results into:

$$\lambda(\overline{\sigma}^2 - v^2)\overline{\sigma} = h - g\frac{z}{R^2}\int d\rho \langle \overline{\psi}\psi \rangle(\rho)$$

 $\Box \sigma(\rho) \simeq 0$ The singlet meson is **slowly varying** along the transverse direction.

$$\lambda(\sigma^2 + \vec{\pi}^2 - v^2) \ \sigma = h - g\langle \overline{\psi}\psi\rangle(\rho)$$

into account.

$$\left[\Box + \lambda(\sigma^2 + \vec{\pi}^2 - v^2)\right]\sigma = h - g\langle \overline{\psi}\psi\rangle(\rho)$$

 $\sigma(\rho) \rightarrow \overline{\sigma}$ Takes a **global (constant) averaged value** over the size of the system. Under

(III) $\Box \sigma(\rho) \neq 0$ The **general case** where the gradients in the transverse directions are taken

 $-\Omega^2 \Gamma^4 (\Gamma^2 - 1) \partial_{\Gamma}^2 \sigma - \Omega^2 \Gamma^3 (3\Gamma^2 - 1)$ $+ \lambda \sigma (\sigma^2 - v^2) = h - q \langle \overline{\psi} \psi \rangle.$

• The solution of the differential equation is subject to initial/boundary condition. Any choice of boundary conditions satisfy the variational principle $\delta \Phi = 0$. Space of solutions $\simeq \mathbb{R}^2$. Is there a **sensible choice of boundary conditions?**

• σ obeys a differential equation and ought to be smooth in ρ ! Can we have a first order phase transition at all??

$$(\bar{\psi}\psi)_{TE} = 2N_f N_c \, g\sigma \\ \times \sum_{\varsigma=\pm 1} \int \frac{d^3 p}{(2\pi)^3 E} \frac{1}{e^{\beta_0 \Gamma^{-1}(E-\varsigma\mu_0)} + \sigma}$$

the critical points: the axis of rotation $\Gamma = 1$ ($\rho = 0$) and the firewall $\Gamma \to \infty$ ($\rho = \Omega^{-1}$).

$$\sigma(\Gamma \to 1) = \sigma_{axis} + \overline{C_1} \log(1 - \Gamma) + O(1 - \Gamma)$$

$$\sigma(\Gamma \gg 1) = C_1 \left(1 + \frac{h}{2} \sigma_0^{-1} \frac{\log \Gamma}{\Gamma^2} \right) + \frac{C_2}{\Gamma^2} + O\left(\frac{\log \Gamma}{\Gamma^4}\right)$$

• The solution diverges at the light cylinder unless $\overline{C}_1 = 0$. First boundary condition $\sigma'_{axis} = 0$. Now the space of solutions $\simeq \mathbb{R}$.

• Sensible choice of boundary conditions? Step 1: Study the differential equation around

$$\Phi^{\mathrm{m.f.}} = \int_{\mathcal{M}} d^3x \left[\frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - \frac{\lambda}{4} (\sigma^2 - v^2)^2 + h\sigma \right]$$

$$-2N_f N_c \sum_{\varsigma=\pm} \int \frac{\Gamma d^3 p}{(2\pi)^3 \beta_0} \ln\left(1 + e^{-\beta_0 \Gamma^{-1} (E+\varsigma\mu_0)}\right) \bigg]$$

• Sensible choice of boundary conditions? Step 2: Evaluate the pressure (or grand

canonical potential) near the firewall

$$2N_f N_c \sum_{\varsigma=\pm} \int \frac{\Gamma d^3 p}{(2\pi)^3 \beta_0} \ln\left(1 + e^{-\beta_0 \Gamma^{-1}(E+\varsigma\mu_0)}\right) = \frac{N_f N_c}{180\pi^2} (7\pi^4 T^4 + 30\pi^2 T^2 \mu^2 + 15\mu^4) \Gamma^4$$

$$-\frac{N_f N_c}{12\pi^2} g^2 \sigma^2 \Gamma^2 (\pi^2 T^2 + 3\mu^2) + O(g^4 \sigma^4)$$

• Sensible choice of boundary conditions? Step 2: Evaluate the pressure (or grand canonical potential) near the firewall

$$2N_f N_c \sum_{\varsigma=\pm} \int \frac{\Gamma d^3 p}{(2\pi)^3 \beta_0} \ln\left(1 + e^{-\beta_0 \Gamma^{-1} (E+\varsigma\mu_0)}\right) = \frac{N_f N_c}{180\pi^2} (7\pi^4 T^4 + 30\pi^2 T^2 \mu^2 + 15\mu^4)$$

• The first term is infinite, but independent boundary conditions. It contributes the same given a thermodynamic state (T, μ, Ω) .

• The second term is negative semi-definite! Any solution with a non-zero value of σ at the light cylinder is thermodynamically infinitely penalised.

of
e
$$-\frac{N_f N_c}{12\pi^2} g^2 \sigma^2 \Gamma^2 (\pi^2 T^2 + 3\mu^2) + O(g^4 \sigma^4)$$

O Second boundary condition: $\sigma(\Gamma \rightarrow \infty) = 0$

(In a finite size system that does not reach the light cylinder, a different boundary condition may be imposed)

• Sensible choice of boundary conditions? Step 2: Evaluate the pressure (or grand canonical potential) near the firewall

penalised.

• To sum up: Given a thermodynamic state (T, μ, Ω) solve the differential equation

subject to the boundary conditions $\sigma(\rho\Omega \to 1) = 0$ and $\sigma'(\rho \to 0) = 0$. We obtain $\sigma(\rho)$ and in particular $\sigma_{axis} = \sigma(\rho \rightarrow 0)$.

order first transition is realised in this setup.

• The solution to the boundary value problem may not be unique! In such case, we use the free energy to discriminate the thermodynamically favoured solution. This is how the first

• The system is either in a **chirally restored phase**, where σ is small everywhere, or in a **mixed inhomogeneous phase**, where it is chirally broken in the region close to the rotation axis and chirally restored close to the light-cylinder. Each **phase identified by** σ_{axis}

CASE III: Phase Diagram

- region the system is in the **chirally restored phase**.
- There is a critical point at zero temperature.
- \bigcirc At small T and small μ , phase transition driven by angular velocity only. Quantum corrections will be important.

• The inner region corresponds to the **mixed inhomogeneous phase** while in the outer

 \odot The critical point is follows a non-monotonic trajectory in phase space as a function of μ .

Discussion & Outlook

- In the unbounded system, a natural boundary appears, along with natural boundary vanish on the firewall. The system shields against the superluminal region.
- rotation.
- \odot The phase of the system can be labelled by the value of σ on axis.
- chemical potential μ .
- Obtain free energy and fermion condensate for ρ -dependent σ .
- (III) Extend these results to the $PLSM_a$.

conditions for the radial dependent gap equation. They always enforce that the singlet meson

 \odot The approximations that σ is constant or gradients are neglected are only valid for small

• The critical endpoint follows a non-monotonic trajectory in phase space as a function of the

Work with the rigid rotating state, i.e. include quantum corrections to Tolman-Ehrenfest

 $\lambda(\overline{\sigma}^2 - v^2)\overline{\sigma} = h - g\frac{2}{R^2}\int d\rho \langle \overline{\psi}\psi \rangle(\rho)$

CASE II: Local σ ($\Box \sigma \simeq 0$)

$\lambda(\rho) \qquad \lambda[\sigma^2(\rho) - v^2]\sigma(\rho) = h - g\langle \bar{\psi}\psi \rangle$

$$\lambda(\overline{\sigma}^2 - v^2)\overline{\sigma} = h - g\frac{2}{R^2}\int d\rho \langle \overline{\psi}\psi \rangle(\rho) \qquad \lambda[\sigma^2(\rho) - v^2]\sigma(\rho) = h - g\langle \overline{\psi}\psi \rangle$$

• As we approach the light cylinder, the **FC diverges** if the singlet attains a finite value there:

$$\frac{2}{R^2} \int_0^R d\rho \,\rho \langle \bar{\psi}\psi \rangle \simeq \frac{2g\bar{\sigma}}{R^2\Omega^2} \left(\frac{T_0^2}{6} + \frac{\mu_0^2}{2\pi^2}\right) \ln\Gamma_R \qquad \qquad \langle \bar{\psi}\psi \rangle \simeq g\bar{\sigma}\Gamma_R^2 \left(\frac{T_0^2}{6} + \frac{\mu_0^2}{2\pi^2}\right)$$

• σ (respectively $\overline{\sigma}$) need vanish as it reaches the light cylinder to solve the gap equation:

$$\bar{\sigma} \simeq \frac{h}{\frac{2g^2}{R^2\Omega^2} \left(\frac{T_0^2}{6} + \frac{\mu_0^2}{2\pi^2}\right) \ln \Gamma_R - v^2 \lambda}.$$

CASE II: Local σ ($\Box \sigma \simeq 0$)

$$\sigma(\rho) \simeq \frac{\sigma_0}{\Gamma^2(\rho) - \sigma_0 h^{-1} \lambda v^2}$$
$$\sigma_0 = \frac{h}{g^2} \left(\frac{T_0^2}{6} + \frac{\mu_0^2}{2\pi^2}\right)^{-1}$$

 $\lambda(\overline{\sigma}^2 - v^2)\overline{\sigma} = h - g\frac{2}{R^2}\int d\rho \langle \overline{\psi}\psi \rangle(\rho)$

 $\bar{\sigma} \simeq \frac{n}{\frac{2g^2}{R^2\Omega^2} \left(\frac{T_0^2}{6} + \frac{\mu_0^2}{2\pi^2}\right) \ln\Gamma_R - v^2\lambda}.$

CASE II: Local σ ($\Box \sigma \simeq 0$)

 $\lambda[\sigma^2(\rho) - v^2]\sigma(\rho) = h - g\langle \bar{\psi}\psi \rangle$

$$\lambda(\overline{\sigma}^2 - v^2)\overline{\sigma} = h - g\frac{2}{R^2}\int d\rho \rho \langle \overline{\psi}\psi \rangle$$

• The global value of σ is a function of the combination ΩR (only true for the Tolman-Ehrenfest state). Predicts $\sigma(\rho) = 0$ if the system extends to the light-cylinder (i.e. $R = \Omega^{-1}$).

CASE II: Local σ ($\Box \sigma \simeq 0$)

 $\rangle(
ho)$ $\lambda[\sigma^2(
ho) - v^2]\sigma(
ho) = h - g\langle \bar{\psi}\psi \rangle$

 $\lambda(\overline{\sigma}^2 - v^2)\overline{\sigma} = h - g\frac{2}{R^2} \int d\rho \langle \overline{\psi}\psi \rangle(\rho)$

• The global value of σ is a function of the combination $\rho\Omega$ (only true for the Tolman-Ehrenfest state). Allows for **inhomogeneous phases**. Predicts first order phase transitions at a finite distance from the rotation axis.

CASE II: Local σ ($\Box \sigma \simeq 0$)

 $\lambda[\sigma^2(\rho) - v^2]\sigma(\rho) = h - g\langle \bar{\psi}\psi \rangle$

CASE I vs. CASE II

• We compare the global solution $\overline{\sigma}$ (Model 1) with the value of the local σ (Model 2) averaged over the size of the system R (*Model 2*).

• Agreement only before the phase transition. Transition happens "earlier" in Model 2. $\mu=0$ $\mu=260~{
m MeV}$

● It is clear from the differential equation that the magnitude of the gradient terms is controlled by the angular velocity Ω . Therefore, cases II and III should agree only for small angular velocity.

$$-\Omega^2 \Gamma^4 (\Gamma^2 - 1) \partial_{\Gamma}^2 \sigma - \Omega^2 \Gamma^3 (3\Gamma^2 - 1) \partial_{\Gamma} \sigma + \lambda \sigma (\sigma^2 - v^2) = h - g \langle \overline{\psi} \psi \rangle.$$

CASE II vs. CASE III

$$\left[-\frac{1}{\rho}\frac{d}{d\rho}\rho\frac{d}{d\rho} + \lambda(\sigma^2 - v^2)\right]\sigma = h - g\langle\bar{\psi}\psi\rangle$$

$$\langle \overline{\psi}\psi\rangle_{T=0} \propto g\sigma(\rho)\theta\left(\frac{\mu}{\sqrt{1-\rho^2\Omega^2}}-g\sigma(\rho)\right)$$