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๏ Interest in rotating QCD matter. (Rotating QGP in heavy-ion collisions).   

๏Systems under rigid rotation are known to be problematic. Specially if unbounded! They can lead to artifacts 
coming from superluminal region. [Davies, Dray, Manogue 1996]  

๏Solution: Place the system in a cylinder and cut the spacetime before the speed-of-light surface. [Ambrus, 
Winstanley 2016] 

๏ Works in Effective models: 

➡  Formally bounded. Use boundary conditions: MIT, spectral… [Chernodub, Gonyo 2016] [Singha, Ambrus, 
Chernodub 2024] 

➡  Unbounded [Chen, Fukushima, Huang, Mameda 2016] [Jiang, Liao 2016] 

Both approaches seem to give similar results!

๏ Typically assume constant value of singlet meson  or local value without gradients.σ



Rotating states: Rigid Rotation vs. Tolman-Ehrenfest

๏ The equilibrium rigid rotating state is defined through the following density operator 

                                                   .  

๏ Eventually, the evaluation of expectation values require to perform the infinite sum over the 
angular momentum eigenvalues, which is computationally demanding.  

๏ It has been shown that the sum can be rearranged into the effect of classical rotation 
(captured by the Tolman-Ehrenfest law) plus quantum corrections.  

๏ The Tolman-Ehrenfest contribution can be efficiently accounted for with the following 
density operator:   

where                         and   β = β0/Γ T = ΓT0 =
T0

1 − Ω2ρ2
μ = Γμ0 =

μ0

1 − Ω2ρ2
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๏ Model proposed to describe the low-energy properties of quark and mesonic degrees of 
freedom in a unified way. 

๏ The model is defined through the Lagrangian:                               , where  

➡       : Pseudoscalar triplet of the pion fields 

➡       : Scalar singlet meson fields. 

➡       : Up and down quarks combined into a SU(2) fermion doublet.

Linear Sigma Model coupled to Quarks

Parameters matched to zero-
temperature results: 

•  Pion decay constant: 0.093 GeV 
•  Pion mass: 0.138 GeV 
•  Constituent quark mass: 0.307 GeV 
•  Mass of sigma meson: 0.600 GeV 



๏ The thermodynamics of the system is encoded in the grand canonical potential  

where.    is the inverse temperate and         the Euclidean partition function:  

๏  We take the mean-field approximation for the mesonic fields, i.e. we study the 
expectation value of  and  while neglecting their quantum fluctuations              Saddle point 
approximation for mesonic fields. 

From now on,  and  denote the expectation values of the fields in a given 
(rotating) state (to be defined later).

σ ⃗π

σ ⃗π

Linear Sigma Model coupled to Quarks

!



๏ The thermodynamics of the system is encoded in the grand canonical potential                               
in the mean-field approximation we have  

๏ The fermionic contribution to  contains only the quark Lagrangian, which is “free”, and can 
be evaluated. At finite temperature and chemical potential, the contribution reads: 

where .

Φ

E = p2 + (gσ)2

Linear Sigma Model coupled to Quarks



Evaluating the Grand Potential and the Fermion Condensate   
in the Tolman-Ehrenfest state

⟨ψ̄ψ⟩Ω,μ,T

๏ The expectation values in the Tolman-Ehrenfest state are effectively given by the result in 
the absence of rotation under the replacements:                                                                                                              

   and    

๏ Therefore, the grand canonical potential and the fermion condensate become 

T = ΓT0 =
T0

1 − Ω2ρ2
μ = Γμ0 =

μ0

1 − Ω2ρ2

= − PLV ! The fermionic contribution to  as well as the fermion 
condensate are obtained for constant . Understand as proxy.

Φ
σ



๏ We shall solve the  eom under three approximations of increasing rigor: 

(I)   Takes a global (constant) averaged value over the size of the system. Under 
this assumption, the extremization of the grand canonical potential results into: 

(II)  The singlet meson is slowly varying along the transverse direction. 

(III)  The general case where the gradients in the transverse directions are taken 
into account. 

σ

σ(ρ) → σ

□ σ(ρ) ≃ 0

□ σ(ρ) ≠ 0

Mean Field Approximation



CASE III: Fully-varying local ( ) □ σ ≠ 0 σ

๏ The solution of the differential equation is subject to initial/boundary condition. Any choice 
of boundary conditions satisfy the variational principle . Space of solutions .                                                        
Is there a sensible choice of boundary conditions?? 

๏  obeys a differential equation and ought to be smooth in ! Can we have a first order 
phase transition at all?? 

δΦ = 0 ≃ ℝ2

σ ρ

Γ =
1

1 − ρ2Ω2



๏ Sensible choice of boundary conditions? Step 1: Study the differential equation around 
the critical points: the axis of rotation  ( ) and the firewall  ( ). 

๏ The solution diverges at the light cylinder unless .                                                           
First boundary condition . Now the space of solutions .  

Γ = 1 ρ = 0 Γ → ∞ ρ = Ω−1

C1 = 0
σ′ axis = 0 ≃ ℝ

CASE III: Fully-varying local ( ) □ σ ≠ 0 σ
Γ =

1
1 − ρ2Ω2



๏ Sensible choice of boundary conditions? Step 2: Evaluate the pressure (or grand 
canonical potential) near the firewall 

CASE III: Fully-varying local ( ) □ σ ≠ 0 σ
Γ =

1
1 − ρ2Ω2



CASE III: Fully-varying local ( ) □ σ ≠ 0 σ
๏ Sensible choice of boundary conditions? Step 2: Evaluate the pressure (or grand 
canonical potential) near the firewall 

๏ The first term is infinite, but independent of 
boundary conditions. It contributes the same 
given a thermodynamic state ( ) . 

๏The second term is negative semi-definite! 
Any solution with a non-zero value of  at the 
light cylinder is thermodynamically infinitely 
penalised. 

T, μ, Ω

σ
๏ Second boundary condition:  

(In a finite size system that does not reach the 
light cylinder, a different boundary condition may 
be imposed)

σ(Γ → ∞) = 0

Γ =
1

1 − ρ2Ω2
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σ
๏ Second boundary condition: σ(Γ → ∞) = 0

Γ =
1

1 − ρ2Ω2



๏ To sum up: Given a thermodynamic state  solve the differential equation 

subject to the boundary conditions  and . We obtain  and in 
particular . 

(T, μ, Ω)

σ(ρΩ → 1) = 0 σ′ (ρ → 0) = 0 σ(ρ)
σaxis = σ(ρ → 0)

CASE III: Fully-varying local ( ) □ σ ≠ 0 σ
Γ =

1
1 − ρ2Ω2

๏ The solution to the boundary value problem may not be unique! In such case, we use 
the free energy to discriminate the thermodynamically favoured solution. This is how the first 
order first transition is realised in this setup.  



CASE III: Fully-varying local ( ) □ σ ≠ 0 σ

๏ The system is either in a chirally restored phase, where  is small everywhere, or in a 
mixed inhomogeneous phase, where it is chirally broken in the region close to the rotation 
axis and chirally restored close to the light-cylinder. Each phase identified by  

σ

σaxis

Γ =
1

1 − ρ2Ω2



CASE III: Fully-varying local ( ) □ σ ≠ 0 σ



CASE III: Phase Diagram
๏ The inner region corresponds to the mixed inhomogeneous phase while in the outer 
region the system is in the chirally restored phase.  

๏The critical point is follows a non-monotonic trajectory in phase space as a function of . 

๏ There is a critical point at zero temperature.  

๏At small T and small , phase transition driven by angular velocity only. Quantum 
corrections will be important.

μ

μ



Discussion & Outlook

๏ In the unbounded system, a natural boundary appears, along with natural boundary 
conditions for the radial dependent gap equation. They always enforce that the singlet meson 
vanish on the firewall. The system shields against the superluminal region. 

๏ The approximations that  is constant or gradients are neglected are only valid for small 
rotation. 

๏ The phase of the system can be labelled by the value of  on axis.  

๏The critical endpoint follows a non-monotonic trajectory in phase space as a function of the 
chemical potential .

σ

σ

μ
(I) Work with the rigid rotating state, i.e. include quantum corrections to Tolman-Ehrenfest 

(II) Obtain free energy and fermion condensate for -dependent . 

(III) Extend these results to the PLSMq. 

ρ σ



Thank you!



CASE I: Global value of σ CASE II: Local  ( )σ □ σ ≃ 0



CASE I: Global value of σ

๏ As we approach the light cylinder, the FC diverges if the singlet attains a finite value there: 

๏  (respectively ) need vanish as it reaches the light cylinder to solve the gap equation:σ σ

CASE II: Local  ( )σ □ σ ≃ 0



CASE I: Global value of σ

๏ As we approach the light cylinder, the FC diverges: 

๏ Thus,  need vanish close to the light cylinder to have a consistent solution:σ

CASE II: Local  ( )σ □ σ ≃ 0



CASE I: Global value of σ CASE II: Local  ( )σ □ σ ≃ 0

๏ The global value of  is a function of the combination  (only true for the Tolman-
Ehrenfest state). Predicts  if the system extends to the light-cylinder (i.e. ). 

σ ΩR
σ(ρ) = 0 R = Ω−1



CASE I: Global value of σ CASE II: Local  ( )σ □ σ ≃ 0

๏ The global value of  is a function of the combination  (only true for the Tolman-
Ehrenfest state). Allows for inhomogeneous phases. Predicts first order phase transitions at a 
finite distance from the rotation axis. 

σ ρΩ



CASE I vs. CASE II

๏ We compare the global solution   (Model 1) with the value of the local   (Model 2) 
averaged over the size of the system R (*Model 2*). 

๏ Agreement only before the phase transition. Transition happens “earlier” in Model 2.

σ σ



๏It is clear from the differential equation 
that the magnitude of the gradient terms 
is controlled by the angular velocity . 
Therefore, cases II and III should agree 
only for small angular velocity. 

Ω

CASE II vs. CASE III



⟨ψψ⟩T=0 ∝ gσ(ρ)θ ( μ

1 − ρ2Ω2
− gσ(ρ))


