

Finantat de Uniunea Europeană

NextGenerationEU

Firewall Boundaries for Rotating Quark Matter in LSMq

Sergio Morales Tejera Victor E. Ambrus & Maxim N. Chernodub

3rd December 2024

Zimányi School 2024. Winter Workshop on Heavy Ion Physics

Motivation & Goals

- ๏ Interest in rotating QCD matter. (Rotating QGP in heavy-ion collisions).
- ๏Systems under rigid rotation are known to be problematic. Specially if unbounded! They can lead to artifacts coming from superluminal region. [Davies, Dray, Manogue 1996]
- Solution: Place the system in a cylinder and cut the spacetime before the speed-of-light surface. [Ambrus, Winstanley 2016]
- ๏ Works in Effective models:
	- Formally bounded. Use boundary conditions: MIT, spectral... [Chernodub, Gonyo 2016] [Singha, Ambrus, Chernodub 2024]
	- ➡ Unbounded [Chen, Fukushima, Huang, Mameda 2016] [Jiang, Liao 2016]
- Both approaches seem to give similar results!
- \odot Typically assume constant value of singlet meson σ or local value without gradients.

Financial support by The European Union NextGenerationEU trough the grant No. 760079/23.05.2023, funded by the Romanian ministry of research, innovation and digitalization through Romania's National Recovery and Resilience Plan, call no. PNRR-III-C9-2022- I8, is gratefully acknowledged.

Rotating states: **Rigid Rotation** vs. **Tolman-Ehrenfest**

- **The equilibrium rigid rotating state** is defined through the following density operator $\hat{\rho}_{RR} = e^{-\beta_0 (\widehat{H} - \Omega \widehat{J}^z - \mu_0 \widehat{Q})}$
- **◎** Eventually, the evaluation of expectation values require to perform the infinite sum over the angular momentum eigenvalues, which is computationally demanding.
- ๏ It has been shown that the sum can be rearranged into the effect of **classical rotation** (captured by the Tolman-Ehrenfest law) **plus quantum corrections.**
- ๏ The **Tolman-Ehrenfest** contribution can be efficiently accounted for with the following density operator:

$$
\hat{\rho}_{TE} = e^{-\beta\cdot\widehat{P}+\beta_0\mu_0\widehat{Q}}
$$

where $\beta = \beta_0/\Gamma$ **AREC is a** $T = \Gamma T_0 = \frac{0}{\sqrt{1 - \Omega^2}}$ and *T*0

$$
\frac{T_0}{1 - \Omega^2 \rho^2}
$$
 and $\mu = \Gamma \mu_0 = \frac{\mu_0}{\sqrt{1 - \Omega^2 \rho^2}}$

- **The equilibrium rigid rotating state** is defined through the following density operator $\hat{\rho}_{RR} = e^{-\beta_0(\widehat{H}-\Omega\widehat{J}^z-\mu_0\widehat{Q})}$
- **●** Eventually, the evaluation of expectation values require to perform the infinite sum over the angular momentum eigenvalues, which is computationally demanding.
- ๏ It has been shown that the sum can be rearranged into the effect of **classical rotation** (captured by the Tolman-Ehrenfest law) **plus quantum corrections.**
- ๏ The **Tolman-Ehrenfest** contribution can be efficiently accounted for with the following density operator:

$$
\hat{\rho}_{TE} = e^{-\beta\cdot\widehat{P}+\beta_0\mu_0\widehat{Q}}
$$

where $\beta = \beta_0/\Gamma$ **AREC is a** $T = \Gamma T_0 = \frac{0}{\sqrt{1 - \Omega^2}}$ and *T*0

$$
\frac{T_0}{1 - \Omega^2 \rho^2}
$$
 and $\mu = \Gamma \mu_0 = \frac{\mu_0}{\sqrt{1 - \Omega^2 \rho^2}}$

Rotating states: **Rigid Rotation** vs. **Tolman-Ehrenfest**

๏ Model proposed to describe the low-energy properties of quark and mesonic degrees of

- freedom in a unified way.
- **The model is defined through the Lagrang**

$$
\text{diam: } \mathcal{L} = \mathcal{L}_M + \mathcal{L}_q, \text{ where}
$$
\n
$$
J(\sigma, \vec{\pi}) \qquad \mathcal{L}_q = \bar{\psi} \left[\frac{i}{2} \overleftrightarrow{\phi} - g(\sigma + i\gamma^5 \vec{\tau} \cdot \vec{\pi}) \right]
$$

$$
\mathcal{L}_M = \frac{1}{2} (\partial_\mu \sigma \partial^\mu \sigma + \partial_\mu \vec{\pi} \cdot \partial^\mu \vec{\pi}) - l
$$

$$
U(\sigma, \vec{\pi}) = \frac{\lambda}{4} (\sigma^2 + \vec{\pi}^2 - v^2)^2 - h \sigma
$$

 $\vec{\pi}$: Pseudoscalar triplet of the pion fields σ : Scalar singlet meson fields. $\blacktriangleright \psi$: Up and down quarks combined into a SU(2) fermion doublet.

Linear Sigma Model coupled to **Quarks**

Parameters matched to zerotemperature results: • Pion decay constant: 0.093 GeV **•** Pion mass: 0.138 GeV **•** Constituent quark mass: 0.307 GeV **•** Mass of sigma meson: 0.600 GeV

๏ We take the **mean-field approximation for the mesonic fields**, i.e. we study the approximation for mesonic fields.

$$
\mathcal{Z}_E^{\text{m.f.}} = \int \mathcal{D}\psi \mathcal{D}\overline{\psi}e^{-\int_0^\beta d\tau \int_{\mathcal{M}} d^3x \mathcal{L}_E}
$$

(rotating) state (to be defined later).

 \bullet The thermodynamics of the system is encoded in the grand canonical potential $\Phi=-\frac{1}{\beta}\ln \mathcal{Z}_E$

expectation value of σ and $\overrightarrow{\pi}$ while neglecting their quantum fluctuations \rightarrow Saddle point

From now on, σ and \overrightarrow{x} denote the expectation values of the fields in a given

Linear Sigma Model coupled to **Quarks**

where β is the inverse temperate and \mathcal{Z}_E the Euclidean partition function:

$$
\mathcal{Z}_E = \int \mathcal{D}\psi \mathcal{D}\overline{\psi} \mathcal{D}\sigma \mathcal{D}\vec{\pi}e^{-\int_0^\beta d\tau \int_{\mathcal{M}} d^3x \mathcal{L}_E}
$$

 \bullet The thermodynamics of the system is encoded in the grand canonical potential $\Phi=-\frac{1}{\beta}\ln{\cal Z}_E$ in the mean-field approximation we have

$$
\Phi^{\rm m.f.}(\sigma,\vec{\pi})=\int_{\mathcal{M}} d^3x \mathcal{L}_M-\frac{1}{\beta}\ln \mathcal{Z}_D
$$

 \odot The fermionic contribution to Φ contains only the quark Lagrangian, which is "free", and can be evaluated. At finite temperature and chemical potential, the contribution reads:

$$
-\frac{1}{\beta}\ln\mathcal{Z}_D = -2N_fN_c\sum_{\varsigma=\pm}\int_{\mathcal{M}}d^3x\int\frac{d^3p}{(2\pi)^3\beta}\ln\left(1+e^{-\beta(E+\varsigma\mu)}\right)
$$

where
$$
E = \sqrt{p^2 + (g\sigma)^2}
$$
.

Linear Sigma Model coupled to **Quarks**

Evaluating the **Grand Potential** and the Fermion Condensate $\langle \bar{\psi} \psi \rangle_{\Omega,\mu,T}$ in the Tolman-Ehrenfest state

■ ● The expectation values in the Tolman-Ehrenfest state are effectively given by the result in the absence of rotation under the replacements: $T = \Gamma T_0 = \frac{0}{\sqrt{1 - \Omega^2}}$ and $T_{\rm 0}$ $\frac{\partial}{\partial \lambda_0}$ and $\mu = \Gamma \mu_0 = 1 - \Omega^2 \rho^2$ $μ₀$ $1 - \Omega^2 \rho^2$

๏ Therefore, the grand canonical potential and the fermion condensate become

$$
\Phi^{\text{m.f.}} = \int_{\mathcal{M}} d^3 x \left[\frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - \frac{\lambda}{4} (\sigma^2 - v^2)^2 + h \sigma \right] \left\langle \bar{\psi} \psi \right\rangle_{TE} = 2N_f N_c g \sigma
$$

\n
$$
-2N_f N_c \sum_{\varsigma=\pm} \int \frac{\Gamma d^3 p}{(2\pi)^3 \beta_0} \ln \left(1 + e^{-\beta_0 \Gamma^{-1} (E + \varsigma \mu_0)} \right) \right] \times \sum_{\varsigma=\pm 1} \int \frac{d^3 p}{(2\pi)^3 E} \frac{1}{e^{\beta_0 \Gamma^{-1} (E - \varsigma \mu_0)} +
$$

\n
$$
= -P_L V
$$

\nThe fermionic contribution to Φ as well as the fermion
condensate are obtained for constant σ . Understanding as **proxy.**

- \odot We shall solve the σ eom under three approximations of increasing rigor:
- this assumption, the extremization of the grand canonical potential results into:

$$
\lambda(\overline{\sigma}^2-v^2)\overline{\sigma}=h-g\frac{2}{R^2}\int d\rho\rho\langle\overline{\psi}\psi\rangle(\rho)
$$

 $\sigma(\theta) \simeq 0$ The singlet meson is **slowly varying** along the transverse direction.

$$
\lambda(\sigma^2+\vec\pi^2-v^2)\;\;\sigma=h-g\langle\overline{\psi}\psi\rangle(\rho)
$$

into account.

$$
\left[\Box + \lambda(\sigma^2 + \vec{\pi}^2 - v^2)\right] \sigma = h - g \langle \overline{\psi} \psi \rangle (\rho)
$$

 $\sigma(\rho) \rightarrow \bar{\sigma}$ Takes a **global (constant) averaged value** over the size of the system. Under $\sigma(\rho) \rightarrow \bar{\sigma}$

(III) \Box $\sigma(\rho) \neq 0$ The **general case** where the gradients in the transverse directions are taken

Mean Field Approximation

CASE III: **Fully-varying** local (□ *σ* ≠ 0) *σ*

$$
-\Omega^2 \Gamma^4 (\Gamma^2-1) \partial_{\Gamma}^2 \sigma -\Omega^2 \Gamma^3 (3\Gamma^2-1) \partial_{\Gamma} \sigma \n\begin{array}{c} \langle \bar{\psi}\psi \rangle_{TE} = 2N_f N_c \, g\sigma \\ \times \sum_{\varsigma=\pm 1} \int \frac{d^3 p}{(2\pi)^3 E} \frac{1}{e^{\beta_0 \Gamma^{-1} (E-\varsigma \mu_0)} +} \end{array}
$$

๏ The solution of the differential equation is subject to initial/boundary condition. Any choice of boundary conditions satisfy the variational principle $\delta \Phi = 0$. Space of solutions $\simeq \mathbb{R}^2$. Is there a **sensible choice of boundary conditions??**

 o *σ* **obeys a differential equation and ought to be smooth in** ρ **!** Can we have a first order phase transition at all??

CASE III: **Fully-varying** local (□ *σ* ≠ 0) *σ*

$$
-\Omega^2 \Gamma^4 (\Gamma^2-1) \partial_\Gamma^2 \sigma -\Omega^2 \Gamma^3 (3\Gamma^2-1) \partial_\Gamma \sigma \hspace{10mm} \langle \bar{\psi} \psi \rangle_{TE} = 2 N_f N_c \, g \sigma \\ + \lambda \sigma (\sigma^2 - v^2) = h - g \langle \overline{\psi} \psi \rangle \, . \hspace{10mm} \times \sum_{\varsigma = \pm 1} \int \frac{d^3 p}{(2\pi)^3 E} \frac{1}{e^{\beta_0 \Gamma^{-1} (E - \varsigma \mu_0)} +}
$$

the critical points: the axis of rotation $\Gamma=1$ ($\rho=0$) and the firewall $\Gamma\to\infty$ ($\rho=\Omega^{-1}$).

$$
\sigma(\Gamma \to 1) = \sigma_{axis} + \overline{C_1} \log(1 - \Gamma) + O(1 - \Gamma)
$$

$$
\sigma(\Gamma \gg 1) = C_1 \left(1 + \frac{h}{2} \sigma_0^{-1} \frac{\log \Gamma}{\Gamma^2} \right) + \frac{C_2}{\Gamma^2} + O\left(\frac{\log \Gamma}{\Gamma^4}\right)
$$

 \bullet The solution diverges at the light cylinder unless $\overline{C}_1 = 0$. **First boundary condition** $\sigma'_{axis} = 0$. Now the space of solutions $\simeq \mathbb{R}$.

Example 6 20 Sensible choice of boundary conditions? Step 1: Study the differential equation around

canonical potential) near the firewall

$$
2N_fN_c\sum_{\varsigma=\pm}\int\frac{\Gamma d^3p}{(2\pi)^3\beta_0}\ln\left(1+e^{-\beta_0\Gamma^{-1}(E+\varsigma\mu_0)}\right)=\frac{N_fN_c}{180\pi^2}(7\pi^4T^4+30\pi^2T^2\mu^2+15\mu^4)\Gamma^4
$$

$$
\left.\frac{\Gamma d^3 p}{(2\pi)^3\beta_0}\ln\left(1+e^{-\beta_0\Gamma^{-1}(E+\varsigma\mu_0)}\right)\right]
$$

$$
-\frac{N_f N_c}{12\pi^2} g^2 \sigma^2 \Gamma^2 (\pi^2 T^2 + 3\mu^2) + O(g^4 \sigma^4)
$$

CASE III: **Fully-varying** local (□ *σ* ≠ 0) *σ*

$$
\Phi^{\rm m.f.} = \int_{\mathcal{M}} d^3x \left[\frac{1}{2} \partial_\mu \sigma \partial^\mu \sigma - \frac{\lambda}{4} (\sigma^2 - v^2)^2 + h \sigma \right]
$$

Example 6 2 Sensible choice of boundary conditions? Step 2: Evaluate the pressure (or grand

CASE III: **Fully-varying** local (□ *σ* ≠ 0) *σ*

Example 6 Sensible choice of boundary conditions? Step 2: Evaluate the pressure (or grand canonical potential) near the firewall

$$
2N_fN_c\sum_{\varsigma=\pm}\int\frac{\Gamma d^3p}{(2\pi)^3\beta_0}\ln\left(1+e^{-\beta_0\Gamma^{-1}(E+\varsigma\mu_0)}\right)=\frac{N_fN_c}{180\pi^2}(7\pi^4T^4+30\pi^2T^2\mu^2+15\mu^4)
$$

 \odot The first term is infinite, but independent boundary conditions. It contributes the same given a thermodynamic state (T, μ, Ω) .

OThe second term is negative semi-definite! Any solution with a non-zero value of σ at the light cylinder is thermodynamically infinitely penalised.

of
$$
-\frac{N_f N_c}{12\pi^2} g^2 \sigma^2 \Gamma^2 (\pi^2 T^2 + 3\mu^2) + O(g^4 \sigma^4)
$$

๏ **Second boundary condition:** *σ*(Γ → ∞) = 0

(In a finite size system that does not reach the light cylinder, a different boundary condition may be imposed)

CASE III: **Fully-varying** local (□ *σ* ≠ 0) *σ*

Example 6 2 Sensible choice of boundary conditions? Step 2: Evaluate the pressure (or grand canonical potential) near the fi

penalised.

 $\begin{array}{c} \hline \end{array}$

The solution to the boundary value problem may not be unique! In such case, we use the free energy to discriminate the thermodynamically favoured solution. This is how the first

CASE III: **Fully-varying** local (□ *σ* ≠ 0) *σ*

O To sum up: Given a thermodynamic state $(T, μ, Ω)$ solve the differential equation

$$
\left(-\frac{1}{\rho}\frac{d}{d\rho}\rho\frac{d}{d\rho} + \lambda(\sigma^2 - v^2)\right]\sigma = h - g\langle\bar{\psi}\psi\rangle
$$
\n
$$
\times \sum_{\varsigma=\pm 1} \int \frac{d^3p}{(2\pi)^3 E} \frac{1}{e^{\beta_0 \Gamma^{-1}(E - \varsigma \mu_0)} + 1}
$$

 $\sigma(\rho\Omega\to 1)=0$ and $\sigma'(\rho\to 0)=0.$ We obtain $\sigma(\rho)$ and in particular $\sigma_{axis} = \sigma(\rho \to 0)$.

order first transition is realised in this setup.

CASE III: **Fully-varying** local (□ *σ* ≠ 0) *σ*

 \odot The system is either in a **chirally restored phase**, where σ is small everywhere, or in a **mixed inhomogeneous phase**, where it is chirally broken in the region close to the rotation axis and chirally restored close to the light-cylinder. Each **phase identified by** *σaxis*

CASE III: Phase Diagram

๏ The inner region corresponds to the **mixed inhomogeneous phase** while in the outer

OThe critical point is follows a non-monotonic trajectory in phase space as a function of μ .

- region the system is in the **chirally restored phase**.
-
- ๏ There is a critical point at zero temperature.
- \odot At small T and small μ , phase transition driven by angular velocity only. Quantum corrections will be important.

Discussion & Outlook

- ๏ In the unbounded system, a natural boundary appears, along with natural boundary vanish on the firewall. The system shields against the superluminal region.
- rotation.
- \odot The phase of the system can be labelled by the value of σ on axis.
- chemical potential μ .
-
- (II) Obtain free energy and fermion condensate for ρ -dependent σ .
- (III) Extend these results to the $PLSM_q$.

conditions for the radial dependent gap equation. They always enforce that the singlet meson

 \odot The approximations that σ is constant or gradients are neglected are only valid for small

๏The critical endpoint follows a non-monotonic trajectory in phase space as a function of the

Work with the rigid rotating state, i.e. include quantum corrections to Tolman-Ehrenfest

 $\lambda(\overline{\sigma}^2-v^2)\overline{\sigma}=h-g\frac{2}{R^2}\int d\rho \rho\langle\overline{\psi}\psi\rangle(\rho)$

CASE I: Global value of σ CASE II: Local σ (\Box $\sigma \simeq 0$)

$\lambda[\sigma^2(\rho)-v^2]\sigma(\rho)=h-g\langle\bar{\psi}\psi\rangle$

CASE I: **Global value of** *σ*

$$
\lambda(\overline{\sigma}^2 - v^2)\overline{\sigma} = h - g\frac{2}{R^2} \int d\rho \rho \langle \overline{\psi}\psi \rangle(\rho) \qquad \lambda[\sigma^2(\rho) - v^2] \sigma(\rho) = h - g\langle \overline{\psi}\psi \rangle
$$

๏ As we approach the light cylinder, the **FC diverges** if the singlet attains a finite value there:

$$
\frac{2}{R^2} \int_0^R d\rho \,\rho \langle \bar{\psi}\psi \rangle \simeq \frac{2g\bar{\sigma}}{R^2\Omega^2} \left(\frac{T_0^2}{6} + \frac{\mu_0^2}{2\pi^2}\right) \ln \Gamma_R \qquad \qquad \langle \bar{\psi}\psi \rangle \simeq g\bar{\sigma} \Gamma_R^2 \left(\frac{T_0^2}{6} + \frac{\mu_0^2}{2\pi^2}\right)
$$

 \bullet *σ* (respectively $\overline{\sigma}$) need vanish as it reaches the light cylinder to solve the gap equation:

$$
\bar{\sigma} \simeq \frac{h}{\frac{2g^2}{R^2\Omega^2} \left(\frac{T_0^2}{6} + \frac{\mu_0^2}{2\pi^2}\right) \ln \Gamma_R - v^2 \lambda}
$$

CASE II: **Local** *σ* (□ *σ* ≃ 0)

$$
\sigma(\rho) \simeq \frac{\sigma_0}{\Gamma^2(\rho) - \sigma_0 h^{-1} \lambda v^2}
$$

$$
\sigma_0 = \frac{h}{g^2} \left(\frac{T_0^2}{6} + \frac{\mu_0^2}{2\pi^2}\right)^{-1}
$$

CASE I: **Global value of** *σ*

 $\lambda(\overline{\sigma}^2-v^2)\overline{\sigma}=h-g\frac{2}{R^2}\int d\rho \rho\langle\overline{\psi}\psi\rangle(\rho)\,.$

 $\bar{\sigma} \simeq \frac{h}{\frac{2g^2}{R^2\Omega^2} \left(\frac{T_0^2}{6} + \frac{\mu_0^2}{2\pi^2}\right) \ln \Gamma_R - v^2 \lambda}.$

CASE II: **Local** *σ* (□ *σ* ≃ 0)

 $\lambda[\sigma^2(\rho)-v^2]\sigma(\rho)=h-g\langle\bar{\psi}\psi\rangle$

$$
\lambda(\overline{\sigma}^2 - v^2)\overline{\sigma} = h - g\frac{2}{R^2} \int d\rho \rho \langle \overline{\psi} \psi \rangle
$$

 \odot The global value of σ is a function of the combination ΩR (only true for the Tolman-Ehrenfest state). Predicts $\sigma(\rho) = 0$ if the system extends to the light-cylinder (i.e. $R = \Omega^{-1}$).

CASE I: Global value of σ CASE II: Local σ ($\Box \sigma \simeq 0$)

 $\lambda[\sigma^2(\rho)-v^2]\sigma(\rho)=h-g\langle\bar{\psi}\psi\rangle$ $\rangle(\rho)$

 $\lambda(\overline{\sigma}^2-v^2)\overline{\sigma}=h-g\frac{2}{R^2}\int d\rho \rho \langle \overline{\psi}\psi \rangle (\rho)$

 \odot The global value of σ is a function of the combination $\rho\Omega$ (only true for the Tolman-Ehrenfest state). Allows for **inhomogeneous phases**. Predicts first order phase transitions at a finite distance from the rotation axis.

CASE I: Global value of σ CASE II: Local $\sigma(\Box \sigma \simeq 0)$

 $\lambda[\sigma^2(\rho)-v^2]\sigma(\rho)=h-g\langle\bar{\psi}\psi\rangle$

CASE I vs. CASE II

 \bullet We compare the global solution $\overline{\sigma}$ (Model 1) with the value of the local σ (Model 2) averaged over the size of the system R (*Model 2*).

๏ Agreement only before the phase transition. Transition happens "earlier" in Model 2. $\mu=260~\mathrm{MeV}$ $\mu=0$

Olt is clear from the differential equation that the magnitude of the gradient terms is controlled by the angular velocity $\Omega.$ Therefore, cases II and III should agree only for small angular velocity.

$$
-\Omega^2 \Gamma^4 (\Gamma^2 - 1) \partial_{\Gamma}^2 \sigma - \Omega^2 \Gamma^3 (3\Gamma^2 - 1) \partial_{\Gamma} \sigma + \lambda \sigma (\sigma^2 - v^2) = h - g \langle \overline{\psi} \psi \rangle.
$$

CASE II vs. CASE III

$$
\left[-\frac{1}{\rho}\frac{d}{d\rho}\rho\frac{d}{d\rho}+\lambda(\sigma^2-v^2)\right]\sigma=h-g\langle\bar{\psi}\psi\rangle
$$

$$
\langle \overline{\psi}\psi \rangle_{T=0} \propto g\sigma(\rho)\theta \left(\frac{\mu}{\sqrt{1-\rho^2\Omega^2}}-g\sigma(\rho)\right)
$$