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Hybrid approach

There are currently several approaches to spin hydrodynamics:

© Determine spin polarization using only gradients of
hydrodynamic fields on the freezeout hypersurface (the main
objects are thermal vorticity @, = —% (OuBy — 0uB,) and
thermal shear &, = —% (8,8, + 9,8,), where g = #)

@ Obtain hydrodynamic equations from kinetic theory.

© Consider mathematically possible forms of the e-m and spin
tensors and apply conservation laws and entropy production.

@ Use the spin-extended Lagrangian formalism.
We propose a framework that combines (2) for the perfect fluid
description and (3) for the inclusion of dissipation.

Z. D., W. Florkowski, M. Hontarenko, Hybrid approach to perfect and
dissipative spin hydrodynamics, Phys. Rev. D 110, 096018 (2024)
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Phenomenological version of thermodynamic relations

The fundamental thermodynamic relation, first law of thermodynamics

and the Gibbs-Duhem relation are
1
e+P=To+un+ EQaﬂS"B,
1
de = Tdo + pdn + 5Qaﬁdsaﬂ,
1
dP = odT + ndp + §5aﬁd§2a6.
Multiplication by u* leads to tensor equations
1
St = PRI — ENF + BT — Ewaﬁswﬁ,
A 1 af
dSH = —&dN¥ + Brd T — EwagdS“’ ,

1
d(PB*) = NHd¢E — TMdBy + 55”’0‘6dwa5,

(6)

wi = £ the spin polarization w3, spin chemical potential Q.5 = Twags,
th £, the spin pol t 8, spin ch | potential Qop = Twag

spin density S°# = 1y S**? and the spin tensor S**% = y* 5P,
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o SHoB = 4S8 appears already in a model of spinning fluid
by Weyssenhoff and Raabe 1947 and has been used many
times since then.

J. Weyssenhoff, A. Raabe, Relativistic Dynamics of Spin-Fluids and
Spin-Particles, Acta Phys. Pol. 9, 7 (1947)

@ It is analogous to perfect fluid expressions
Nig = nut, é\qu = (e + P)u*u* — PgM = eutut — PAM.

@ However, it is not justified by microscopic calculations.
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Kinetic theory with a classical description of spin

Internal angular momentum

where the spin 4-vector s- p =0, s* = Teaﬁ“f‘;pgs 5
In the particle rest frame, p* = (m,0,0,0), s* = (0,s.), |s«| = ».

=12(1+12) =3/ (8)
Local equilibrium distribution functions for particles (+) and for

antiparticles (—) have the Fermi-Dirac form

1

(9)

= =600 +p B0 — 5w s, (10)

with w(x) 1 s = wy, ™.
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Preliminaries

Parametrization of the spin polarization tensor
Wap = kau5 — kﬁua + tag, (11)

with k-u=w-u=0,t,z = 6a575u7w6, th = thk, = e””aﬁkyuawg.
Integration measures

d3p
e (12)
ds = Zdsé(s s+ 82)i(p - s). (13)

T8
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Currents and tensors

The baryon current, the energy-momentum tensor, and the spin tensor
in local equilibrium

Né‘q = /dP ds p* [feg(x, p,s) — foq (x, p,s)] , (14)
T = /dP ds ptp¥ [fh(x, p,s) + fq(x,p,5)] , (15)
So = / dPdsS p*s* [£L(x,p,s) + fig(x,p,s)] . (16)

In addition, we define the current N'* (= PB* in traditional hydrodynamics)

Nu:_/des p [In(1 = £8) +In(1 - £)] - (17)
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The entropy current

eq eq

si— —/deS P [FEINEE — £EIn(L— £4) + In(1— £5)]

We use the formula

foq In foq = foq IN(1 = foq) = —yfeq (19)
and express Sl in terms of other tensors and currents

Sc”q:/deSpf‘[cz(—§+p~ﬂ—%w:s)+f'cg(§+p.g_%w:s)} +NH
(20)
1
_ o o
Sty = —NEE + Tl Ba — 554 wap + N¥. (21)

This is similar to Eq. (4), except N'* # N for particles with spin.



Perfect spin hydrodynamics
[ee]e]e] ]

Expansion for small spin

For small magnitudes of w, we can expand the FD distribution
functions around ys =0

+ + +
1 1 e¥o e (e —1
T == R 2y5+ (i )y52+-~-,(22)
et 4+1 e +1 (&% +1) 2(e% +1)3

where yi" = FE(x) +p- B(x), ys = —3w : 5.

eq

1
R O

1 1
zfoi+§f1iw:s+§f2i(w:s)2+~~
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The baryon current

Expansion up to quadratic order in w

Ny = [aPS P [Bilxip,s) — fialop.s)] = 2257~ 257)
(24)

oW Wy 5 +noB —papy, ¥
+ 8 T(Zz )JF (Z -4 Jw awpy + -y

zEop- / dPpp® .. .fE. (25)
In the Boltzmann case,
ZFoB _y ottzaB. = ett [dPpepP .- e PP,.n=10,1,2, and so
N, = (no + nk + ng)ut + neth, (26)

.. 2 .
with coefficients np = 25'”h5 2’T3Ky(z), nk= —253%"527-3K3(Z)k2,

i =~ EET 2o (2) 1 2Ke(2) ;= 2 TOK(2),
Kn(z) — Bessel functions of the second kind.
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The energy-momentum tensor

Expansion up to quadratic order in w

T = /dP dS ptp” [£(x, p,s) + fug(x, p,5)] = 2 (z;“”+zo—“”)

(27)
LR . <Z+W+Z m/)+3ﬁ _ (Z*’“’aﬁJrZ uuaﬁ) W Wy
Zn:I:oz[‘l :/deapB...f,,i.
In the Boltzmann case,
TW = (g0 + &b + &5)uu” — (Po+ P5 + P5)AM (28)

+ Pro(KH K" + wHw”) + Pe(t*u” + t"u"),
with )
co = 2PE 2T zKs(2) — Ka(2)],  ef = — 22558 2T [zKo(2) + 5Ks(2)]K
ey = _%27%[2}(2( )_|_ (22 + 10)K32(z)w2, Py = 2cosh§ 2T4K ( )
Pf = —AE e THG(2)K?, Py = % °°5h§zT4[zK2(z) + 4K3(2)]w?,
2
Pro = 2N T K (2),  Pr= 2N T4 Ky (2) — 2Ka(2))-

fr2
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The spin tensor

Expansion up to linear order in w

17 v —_ 2ﬁ2 v _
S :/de5p 1 (R0 pos) + fig (o pos)] = 5w (27 + 27

+ 32% [(zlﬂau bz (Zie ZI_MU)OJHQ] L (29)
In the Boltzmann case,
S = P A (KFUY — K u) + Art]
+§ (WUV PV AN _ A ku)) (30)
where
A= 4ﬁ3c°25h£ZT3K3( ), A= 25;7‘);*1527'3 [zK>2(2) 4+ 2K3(2)].

Not just Siq b — yugas,
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Entropy current for the Boltzmann case

1
Sly = Tl Ba — SwapSli™” — ENl + N (31)
Sty = out + o th, (32)

with G = < + (coth{ —€)A—5, op = % + (coth& — &)ny — s¢.
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Note on Fermi-Dirac statistics

Tensors
Zniocﬂ--- = /deapB . fni

instead of
7B = /deap'B e PP

admit the same decomposition in terms of generic tensors of the
same symmetry built out of u* and g"¥, but the expressions
contain integrals other than the Bessel functions.

In the limit case ¢ — 0, we retrieve the Boltzmann case.
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Close-to-equilibrium dynamics

@ We write general nonequilibrium expressions as the equilibrium
terms plus corrections
Nt = NE 4+ N#, - TH = T 45T, SHef = giel 4 sgmad,
(33)
@ The spin-orbit interaction is introduced through dissipative terms.
@ TH¥ contains nonsymmetric parts, and the spin tensor is not

seperately conserved
8M_j#,045 =0, Juwab — yaTuB _ yBTha 5#7045,

957 =TT g =0, g, T =0 ()

@ From Egs. (31, 33, 34), we get
1
8M5/L = 6N”8M§+5Tsﬂyauﬁy“‘(ST;y(auﬁu_wl/p,)_E(sslhaﬁauwaﬂ-
(35)

(Compare, e.g., K. Hattori et al., Fate of spin polarization in a relativistic fluid.
An entropy-current analysis, Phys. Lett. B 795 (2019) 100-106,

F. Becattini, A. Daher, X.-L. Sheng, Entropy current and entropy production in
relativistic spin hydrodynamics, Phys. Lett. B 850 (2024), 138533.)
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General tensor decomposition

To find the form of the deviations §N#, § THY, §SH*B e use
a decomposition of general tensors of the given symmetry via projections
along u* and separation into symmetric and antisymmetric parts

NH = au* + bH,
TH = cul'u” + diu” + dYub + diu” — dlut el o+ el
S)\,uu — u)\ [(f-uuu _ f”u”) 4 epypaupwal + I-/\uuu _ I-)\Vuu +j>\uu’
(36)

with the constraints b*u, =0, d¥u, = dt'u,, = e'u, = et"u, =0,
fPu, =0, " = —h"*, h*u, =0, My = /A“uu =0,

Y Avp A A A

JMY = =R My = Y, = M, =0, weu = 0.
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The dissipative corrections

Some parts of the general tensors have the same form as the
equilibrium ones. When we enforce the Landau matching

conditions
(7
N*u,, = Néquy,
v . 2
T u,u, = T upuy, (37)
SA’MVU)\ = Se)\(iMVU)\,
we obtain

a=a(T,& k% w?), c=2&(T,¢ k% w?),
f=A(T, k", wh=A(T,&w".
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The remaining terms are
SNH = VI,
STI = —NAM + WHY” + WYk 4 kv,

39
STI = diu’ — dyut + e, (39)
65)\,#1/ _ Z)\,u,uu o Z)\uuu + QS/\,U,V,
with
V[L — b[l. _ nttp,’ I—I —e— pkw, W;J, — dsp _ Ptthy
A
v v v v A N A

py :e§”>—Pkw(k<“k>+w<”w>), ZM:’M_Et 3 (40)

¢>\,u,1/ :J-A;w _ é(AMk" _ A)\Vk,u,).
Equations (39) have the same form as in (Biswas 2023) and can be
expressed in terms of gradients of hydrodynamic variables
multiplied by kinetic coefficients.

R. Biswas, A. Daher, A. Das, W. Florkowski, R. Ryblewski, Relativistic
second-order spin hydrodynamics: An entropy-current analysis,

Phys. Rev. D 108, 014024 (2023).
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Thus, we get the form of the tensors
b* = AVPE 4 neth. ¢ =&(T,€, k% w?), dPf = —k(Dut — BVHT) 4 Pet#,
di = X8 H(BDu* + BPVHT —2kH), e =P — (0 — (1/3)Pyo, (k> + w?),
es<”"> = 2ot 4+ Py ( KSHpv) 4 w<“w”>), elV = 'yBV[“u”],
A
M= 1 DM w05 — xou, VAWM — xau, AT w4 Et*“,

j)\/,l.l/ _ %ka(‘u)(y) + g(A)\pku _ A)\Vk’u),
(41)

with D = u*0,, 0 = p,ut, ot = p<“u”>, 7, — shear and bulk
viscosity, k — thermal conductivity, A,,y — coefficients introduced
in (Hattori 2019), x1, X2, X3, x4 — coefficients from (Biswas 2023).

@ This, together with the conservation laws, forms a framework
of dissipative spin hydrodynamics.
@ We include second-order terms in w in a consistent way.

@ Including second-order terms in gradients is straightforward.
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Summary

We combine the perfect-fluid results of kinetic theory for
particles with spin 1/2 with the Israel-Stewart approach for
including nonequilibrium processes.

@ Two-fold expansion: in w and in gradients of hydrodynamic
variables.

@ With spin degrees of freedom, the perfect-fluid description
contains seemingly dissipative, transverse terms.

@ Genuine dissipative terms come from the condition of positive
entropy production.

@ The results can be implemented in code for numerical
simulations.
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Thank you for your attention!
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