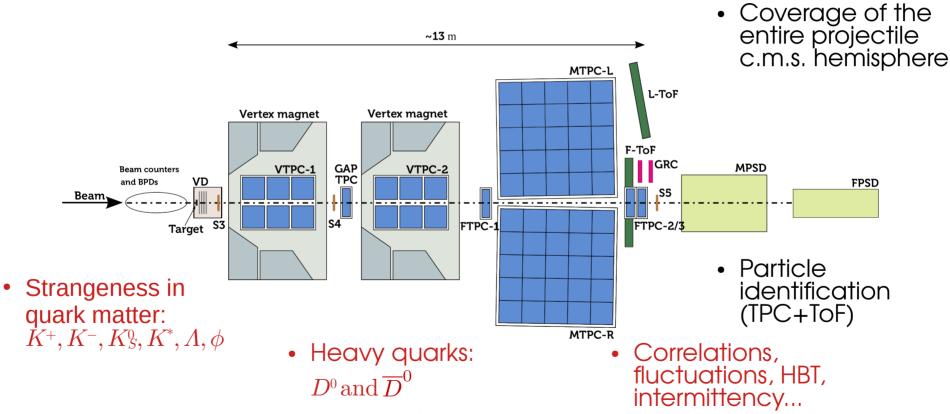
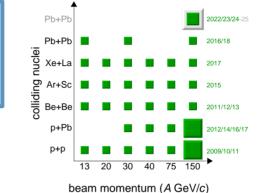
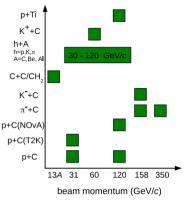
Highlights from NA61/SHINE

24th Zimányi School, Winter Workshop on Heavy Ion Physics

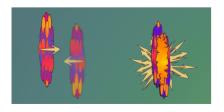


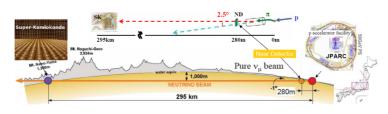
NA61/SHINE at CERN SPS

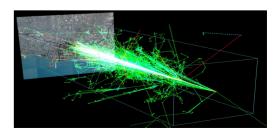

• Multipurpose fixed-target spectrometer with unique capabilitites



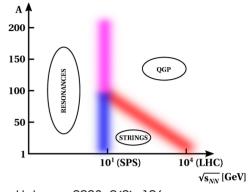
2024.12.04

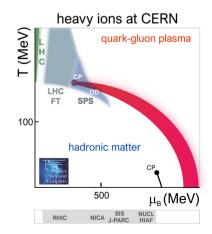

Research Program of NA61/SHINE


- Strong interaction physics Study the onset of deconfinement
 - Search for the critical point
 - Measurement of open charm
- Neutrino and cosmic-ray physics
 Measurements for neutrino programs
 (J-PARC, Fermilab)
 Measurements for cosmic-ray physics
 (Pierre-Auger, KASCADE, satellite experiments)



3





Strong Interaction Program

- Onset of deconfinement, onset of fireball
 - Beginning of QGP creation in heavy-ion collisions with an increase in collision energy
 - The transition from non-equilibrium strings to QGP with increasing masses of colliding nuclei
- Critical Point
 - The endpoint of first-order phase transition line that has properties of second-order phase transition
- Open charm
 - Direct measurement of open charm at SPS energies

Universe 2023, 9(2), 106

CERN-PBC-REPORT-2018-003

Barnabás Pórfy for the NA61/SHINE

4

Onset of Deconfinement

Onset of Deconfinement, Onset of Fireball

theo: Acta Phys.Polon.B 46 (2015) 10, 1991

exp: Phys.Rev.C 77 (2008) 024903

ONSET OF DECONFINEMENT

- Measured by the ratio of positively-charged kaons and pions at mid-rapidity
- Approx. proportional to the ratio of (anti-)strange quarks to entropy

A /

200

- By measuring strangenessto-entropy ratio one can probe the onset of deconfinement
 - HADRONS RESONANCES √s_{NN} 150 **QGP** AGS SPS LHC theo: Phys.Part.Nucl. 51 10^{2} 10^{4} (2020) 3, 337-339 Vs_{NN} (GeV) 100 OF FIREBALI exp: Phys.Rev.C 102 (2020) 011901theo: Phys.Rev.D 90 (2014) 025031 exp: CERN Courier, Sep 23rd, 2019 NA61/SHINE WORLD BREAK DNSET K⁺/π⁺ (y^{*} K⁺/H⁺ 50 ő 150A GeV/c +*₩*+*₩*+ 0.2 STRINGS 0.2 √s_{NN} 0.1 10⁴ (LHC) 10¹ (SPS) $\sqrt{s_{NN}}$ [GeV] 0.1 LHC 10^{4} 10^{2} Vs_{NN} (GeV) Be+Be

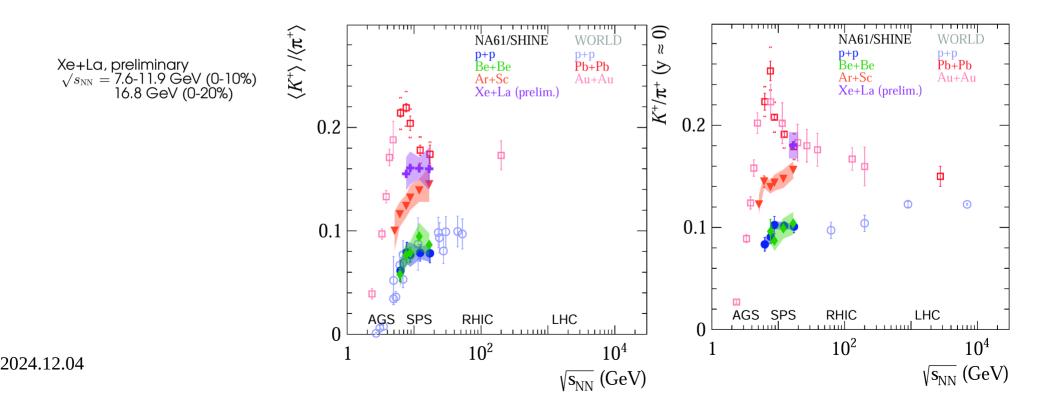
2024.12.04

Si Xe+La Ar+Sc Pb+Pb

 (\mathbf{W})

 10^{2}

10

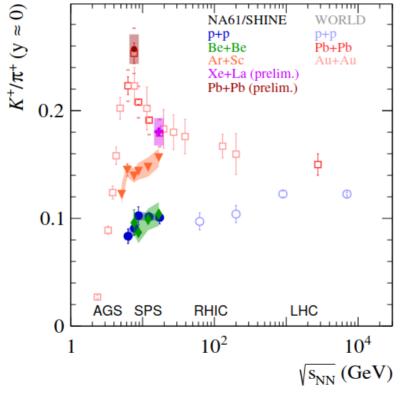

NA49 WORLD

0.2

0.

Probing the Onset of Deconfinement

- System size dependence of K^+/π^+ ratio Rapid change of ratio signifies onset of deconfinement Other NA61/SHINE data: EPJC 77 (2017) 671 EPJC 81 (2021) 73, EPJC 84 (2024) 416 Xe+La between intermediate sized (Ar+Sc) and large sized (Pb+Pb) systems
- No indication of horn .



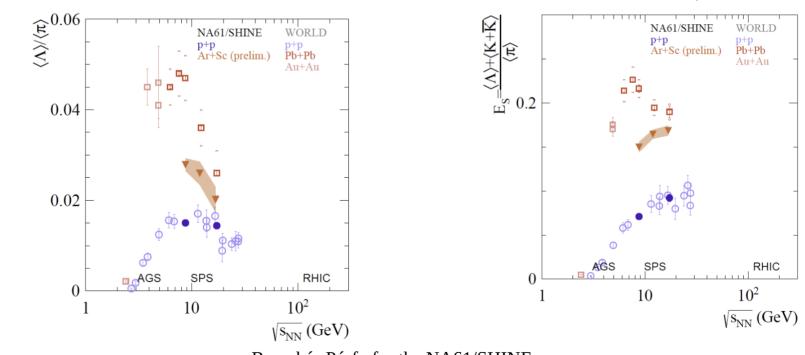
Probing the Onset of Deconfinement

More details: slides of Uzair Shah, Wednesday, 11:25

8

- <u>Pb+Pb</u> measurement at 30A GeV/*c* Good agreement with previous NA49 Pb+Pb results

Pb+Pb, preliminary $\sqrt{s_{\rm NN}} = 7.7 \text{ GeV} (0-7.2\%)$

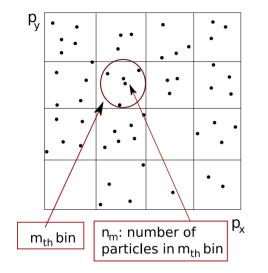


Probing the Onset of Deconfinement

- Similar decline of $\Lambda/\pi\,$ ratio in Ar+Sc and Pb+Pb
- No maximum observed in $E_{\rm s}$ compared to Pb+Pb

 $E_{\rm s} = \frac{\langle \Lambda \rangle + \langle {\rm K} + \overline{\rm K} \rangle}{\langle \pi \rangle}$

More details: slides of Yuliia Balkova, Wednesday, 16:50

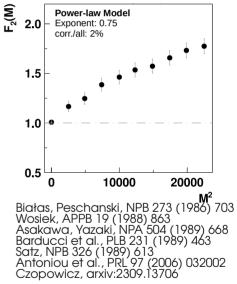

2024.12.04

Barnabás Pórfy for the NA61/SHINE

Critical Point Search

10

Critical Point Search: Intermittency

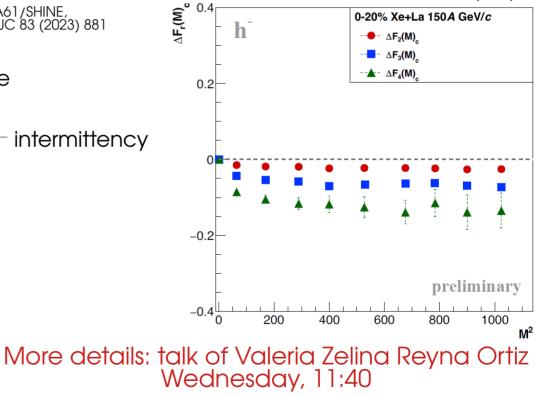


- At system freezeing-out near or at CP, its properties expected to be different from an ideal gas
 - System represents a simple fractal
 - Scaled factorial moments $F_r(M)$ are expected to follow a power-law behaviour:

 $F_r(M) = F_r(\Delta) \cdot (M^D)^{\phi_r}$

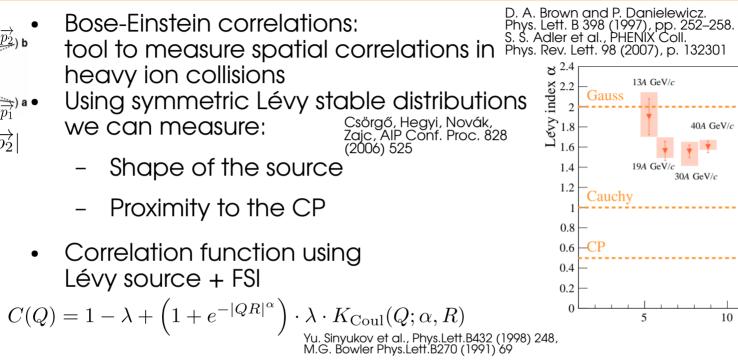
 $F_r(M) = \frac{\left\langle \frac{1}{M^D} \sum_{m=1}^{M^D} n_m(n_m-1) \dots (n_m-r+1) \right\rangle}{\left\langle \frac{1}{M^D} \sum_{m=1}^{M^D} n_m \right\rangle^r}$

N. Antoniu et al., Phys.Rev.Lett.97 (2006) 032002



11

- M^{D} number of equally sized cells in D dim. space n_{m} number of particles in m^{th} bin
- $\langle ... \rangle$ averaging over events


Critical Point Search: Intermittency

- Cumulative quantities (p_x, p_y are transformed to obtain a uniform 2D distribution) Białas, Gazdzicki, PLB 252 (1990) 483
- Statistically independent data points NA61/SHINE, EPJC 83 (2023) 881
- Number of subdivisions in cumulative transverse momentum space $1^2 < M^2 < 32^2$
- Xe+La central (0-20%) at 150A GeV/*c*, h^- intermittency no signal indication of the critical point using cumulative $p_{\rm T}$ binning

12

Critical Point Search: Femtoscopy

• Ar+Sc central (0-10%) results show small non-monoticity, far from CP, close to Gaussian

Ar+Sc, 0-10% central, NA61/SHINE preliminary, Universe 9 (2023) 7, 298; arXiv:2406.02242, 2410.13975 Be+Be, 0-20% central, NA61/SHINE, EPJC 83 (2023) 919

More details: my poster and flash talk Thursday, 13:32

13

150A GeV/c

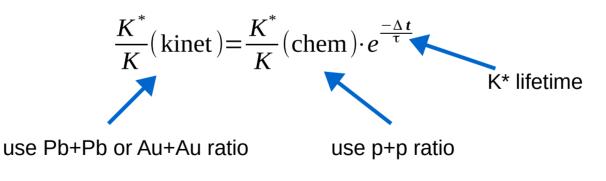
Ar+Sc

Be+Be

20

 $\sqrt{s_{NN}}$ (GeV)

75A GeV/c


10

Barnabás Pórfy for the NA61/SHINE

2024.12.04

 $q = |\overrightarrow{p_1} - \overrightarrow{p_2}|$

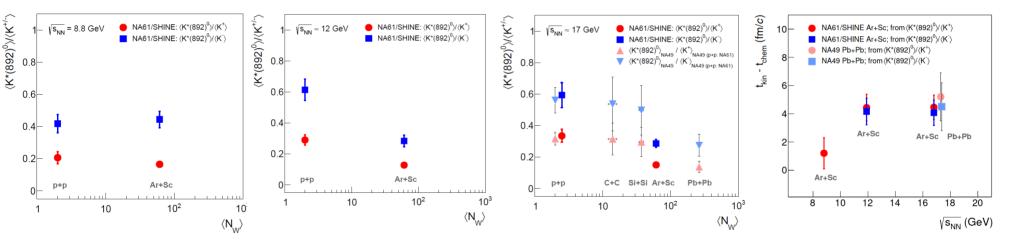
- Study of $K^*(892)^0$ production in 0-10% central Ar+Sc at 40A, 75A and 150A GeV/c
- K^* lifetime ($\approx 4 \text{ fm/c}$) comparable with the time between two freeze-outs $K^*(892)^0$
 - K^* resonances may decay inside fireball
 - Suppression of observed K^* yield
 - Assuming no regeneration processes
 - the Δt between freeze-outs can be determined STAR, PRC71, 064902, 2005

Chemical

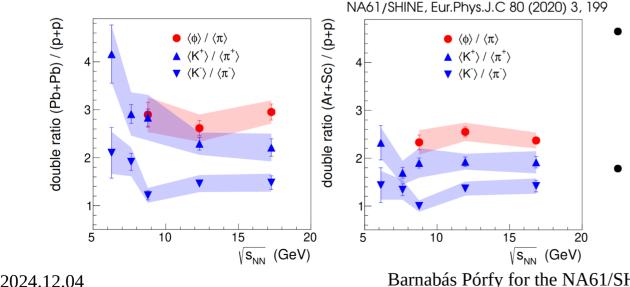
freeze-out

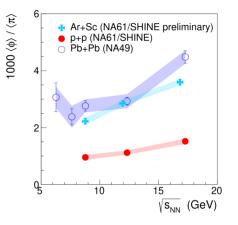
K

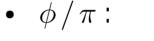
Kinetic


time

freeze-out

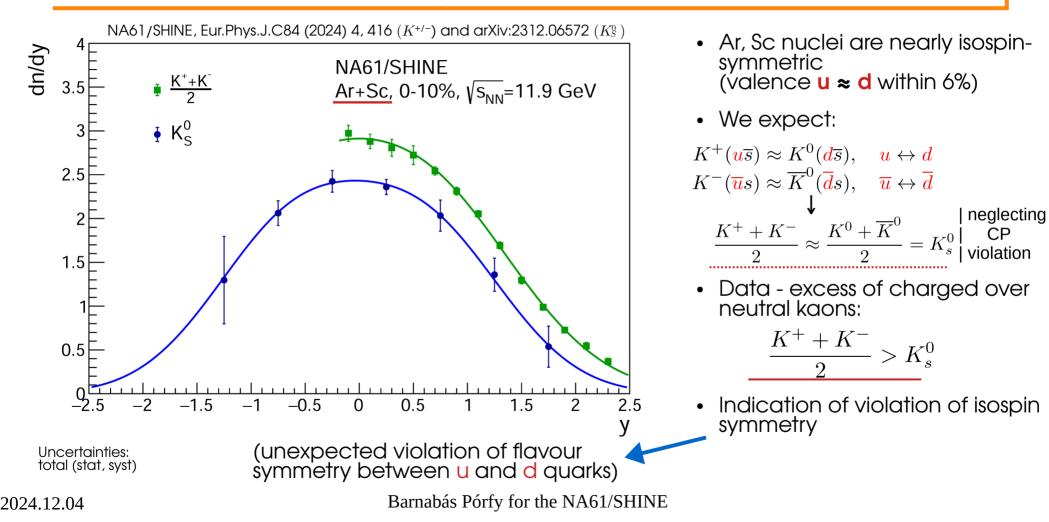

Κ


- No K^* suppression in Ar+Sc $\sqrt{s_{NN}} = 8.8$ GeV? •
- Ar+Sc \approx Pb+Pb at $\sqrt{s_{\rm NN}} \approx 17$ GeV Time between freeze-outs Ar+Sc \approx Pb+Pb at $\sqrt{s_{\rm NN}} \approx 17$ GeV



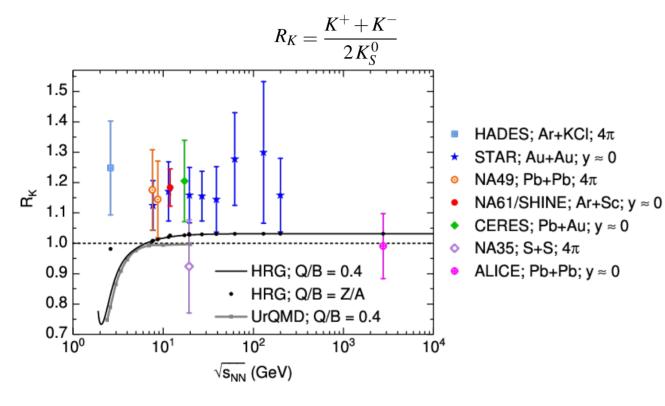
- Production of $\phi(1020)$ meson
 - Lightest meson with hidden strangeness
 - Constrains hadron production models
 - Comparison to Pb+Pb and p+p results
- Preliminary results in Ar+Sc at $\sqrt{s_{\rm NN}} \approx 8.8, 12, 17$ GeV •

- Ar+Sc < Pb+Pb
- Ar+Sc \gg p+p
- ϕ production > K
 - Independent of $\sqrt{s_{\text{NN}}}$ (in the observed range)


Barnabás Pórfy for the NA61/SHINE

17

Excess of charged over neutral kaons


18

Excess of charged over neutral kaons

19

Excess of charged over neutral kaons

over neutral kaon production in A+A collisions

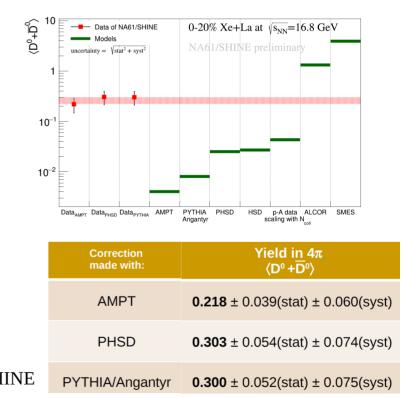
•

HRG model does not reproduce
 experimental results

Unexpected excess of charged

• Up to now, not understood by known effects

Theor. details: Francesco Giacosa, Wednesday, 11:05


2024.12.04

Open Charm

Open Charm

- First-ever direct measurement of open charm production in A+A collisions at SPS energies! NA61/SHINE preliminary arXiv:2410.24014
- Results from Pb+Pb collisions will soon follow from NA61/SHINE

Summary

- No indication of horn in Ar+Sc or Xe+La
- No sign of critical point
- Unexpected excess of charged-over-neutral kaon production in Ar+Sc collisions
- First-ever direct measurement of open charm production in nucleus-nucleus collisions at SPS energies

Thank you!