with C. Brito, D. Wagner, D. Rischke, see arXiv:2401.10098

Hydrodynamization and thermalization in heavy ion collisions

Gabriel Denicol

Universidade Federal Fluminense

Current picture of a heavy ion collision

Empirical: Fluid-dynamical modeling of heavy ion collisions works well at RHIC and LHC energies

Validity of fluid dynamics

• proximity to (local) equilibrium

● "small" gradients

microscopic *Separation of scales* Knudsen number: $K_N \sim$ $\mathrm{Kn} = \tau_{\pi} \nabla_{\mu} u^{\mu}$

Do these things happen in heavy-ion collisions?

1.50

 1.35

 1.20

 1.05

 0.90

 0.75

0.60

0.45

0.30

 0.15

0.00

macroscopic

Can this system be close to equilibrium? Hydrodynamization?

Basics of fluid dynamics

Closure?

(Resistance to deformation)

$$
\pi^{\mu\nu} = 2\eta \nabla^{\langle \mu} u^{\nu \rangle}
$$

$$
\boxed{\Pi} \;\; = \;\; -\zeta \nabla_\mu u^\mu
$$

$$
\bigg(q^\mu
$$

Navier-Stokes theory: constitutive relations

Shear Viscosity Bulk Viscosity

(Resistance to expansion)

Net-Charge Diffusion

Acausal and unstable: cannot describe relativistic fluids

What we solve is not "traditional" fluid dynamics

Causality: constitutive relations for the dissipative currents *cannot* be imposed

Dynamical equations, e.g. Israel-Stewart theory Annals Phys. 118 (1979) 341-372

non-perturbative theory in gradients!

Heller&Spalinski, Phys.Rev.Lett. 115 (2015) 7, 072501

$k^{\mu} \partial_{\mu} f_{\mathbf{k}} = C[f]$	Relativistic Boltzmann eq.
Pathod of moments	
$\tau_{\Pi} \Pi + \Pi = -\zeta \theta + \dots$	Relativistic Hydrodynar

How can we derive/understand these theories?

We can study this problem in kinetic theory

8

Why does this matter? Need *microscopic* description of the medium

fluid variables $T^{\mu\nu}$ *particles* $f(x,p)$ $\delta f(k) \sim \frac{\pi^{\mu\nu}}{\varepsilon_0 + p_0} k_{\mu} k_{\nu}$

What you will see today

We solve the Boltzmann equation for an *ultrarelativistic* gas in *Bjorken flow* using the *method of moments*

Outline:

- Boltzmann equation in *Bjorken flow and* the method of moments
- Divergence of the moment expansion
- Numerical solutions of the Boltzmann equation
- Discussion and conclusions

Bjorken flow (toy model of a heavy ion collision) J. D. Bjorken, Phys. Rev. D27, 140 (1983)

Simple model for *boost invariant* longitudinal expansion

Homogeneous fluid in hyperbolic coordinates (τ, x, y, ς)
 $\tau = \sqrt{t^2 - z^2}$ $\varsigma = \tanh^{-1}(z/t)$ *v* z $= z/t$ **Static velocity Gradients ~ 1/t energy-momentum tensor**
 $u^{\mu} = (1,0,0,0)$ $\sigma^{\mu}_{\nu} = \text{diag}\left(0, -\frac{1}{3\tau}, -\frac{1}{3\tau}, \frac{2}{3\tau}\right)$ $T^{\mu}_{\nu} = \text{diag}(\varepsilon, P - \pi/2, P - \pi/2, P + \pi)$

Knudsen number: $K_N \sim \hat{\tau}^{-1} \equiv \tau_R/\tau$

Boltzmann equation for an ultrarelativistic gas (Bjorken flow)

<u>Single particle distribution function:</u> $f_{\mathbf{k}} = f(\tau, k_0, k_m)$

- can be solved numerically
- used to study the fluid-dynamical limit

truncation leads to hydro (no small parameter)

$\Theta)L_n^{(4\ell+1)}(\beta E_{\mathbf{k}})$

Method of moments (Bjorken flow)

H. Grad, Comm. Pure Appl. Math. 2, 331 (1949) Israel&Stewart, Annals Phys. 118 (1979) 341-372 Denicol et al, PRD 85, 114047 (2012)

Single particle distribution function
$$
f_{\mathbf{k}} = f(\tau, k_0, k_{\eta_s})
$$

\n**Moment expansion** $f_{\mathbf{k}} = f_{0\mathbf{k}} \sum_{\ell=0}^{\infty} \sum_{n=0}^{\infty} c_{n,\ell} (\beta E_{\mathbf{k}})^{2\ell} P_{2\ell}(\cos \theta)$
\n**moments of** f
\n $c_{n\ell} \sim \int_{k} E_{\mathbf{k}}^{\ell} P_{\ell}(\cos \Theta_{\mathbf{k}}) L_{n}^{(2\ell+1)}(\beta E_{\mathbf{k}}) f_{\mathbf{k}}$

Equations of motion $\dot{c}_{n\ell} = F(\tau, \{c_{n\ell}\})$

14-moments approx. (Bjorken flow)

H. Grad, Comm. Pure Appl. Math. 2, 331 (1949) Israel&Stewart, Annals Phys. 118 (1979) 341-372 Denicol et al, PRD 85, 114047 (2012)

Moment solutions

A surprise: divergence of the moment expansion

A surprise: divergence of the moment expansion $f_k = \sum_{n=0}^{\infty} \frac{4\ell+1}{2} P_{2\ell}(\cos \Theta) \mathcal{F}_k^{(\ell)}$

Borel-Pade resummation: results

Borel-Pade resummation: results

Comparison with hydrodynamic approximations

Hydrodynamic approximations are not in good agreement with exact δf

14 moments Chapman-Enskog Exact solution

 $\hat{\tau} = 10$

 2.5 7.5 10.0 5.0 $\beta E_{\bf k}$

Summary/Conclusions

Very large isotropic component, even without bulk viscosity • non-hydrodynamic origin

 \bullet does not couple to $T^{\mu\nu}$ due to massless limit

Shear component of the distribution function does not match hydrodynamic approximations

 \rightarrow This could be important for calculating thermal photon emission

We solve the Boltzmann equation for an *ultrarelativistic* gas in *Bjorken flow* using the *method of moments*

 $T^{\mu\nu}$ is well described by hydrodynamics, but δf is not.