Deuteron production in ultrarelativistic heavy-ion collisions (with a focus on elliptic flow)

Boris Tomášik, Radka Vozábová, Tomáš Poledníček

Fakulta jaderná a fyzikálně inženýrská, České vysoké učení technické, Praha, Czech Republic and Univerzita Mateja Bela, Banská Bystrica, Slovakia

boris.tomasik@cvut.cz

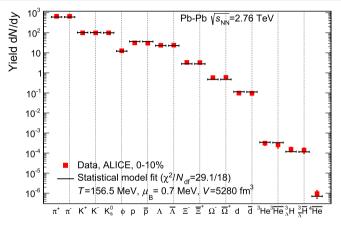
Zimányi School, Budapest, 2024

4.12.2024

Clusters and statistical model: a coincidence?

Cluster abundancies fit into a universal description with the statistical model

 $T \gg E_b !!!????$



[A. Andronic et al., J. Phys: Conf. Ser 779 (2017) 012012]

This is (a part of the) motivation to look at clusters, although clusters actually carry *femtoscopic* information about the freeze-out.

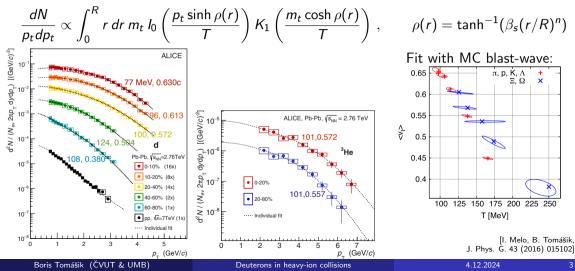
Boris Tomášik (ČVUT & UMB)

Deuterons in heavy-ion collisions

Kinetic freeze-out of clusters: ALICE

[J. Adam et al. [ALICE collab], Phys. Rev. C 93 (2016) 024917]

 p_t spectra of d and ³He fitted individually with the blast-wave formula



[R. Scheibl, U. Heinz, Phys. Rev. C 59 (1999) 1585]

Projection of the deuteron density matrix onto two-nucleon density matrix Deuteron spectrum:

$$E_d \frac{dN_d}{d^3 P_d} = \frac{3}{8(2\pi)^3} \int_{\Sigma_f} P_d \cdot d\Sigma_f(R_d) f_p\left(R_d, \frac{P_d}{2}\right) f_n\left(R_d, \frac{P_d}{2}\right) \mathcal{C}_d(R_d, P_d)$$

QM correction factor

$$C_d(R_d, P_d) \approx \int d^3r rac{f(R_+, P_d/2)f(R_-, P_d/2)}{f^2(R_d, P_d/2)} |\varphi_d(\vec{r})|^2$$

r relative position, R_+ , R_- : positions of nucleons approximation: narrow width of deuteron Wigner function in momentum

Analytical approximation of the (average) correction factor

[R. Scheibl, U. Heinz, Phys. Rev. C 59 (1999) 1585]

$$\langle \mathcal{C}_d \rangle (P_d) = \frac{\int_{\Sigma_f} P_d \cdot d\Sigma_f(R_d) f^2\left(R_d, \frac{P_d}{2}\right) \mathcal{C}_d(R_d, P_d)}{\int_{\Sigma_f} P_d \cdot d\Sigma_f(R_d) f^2\left(R_d, \frac{P_d}{2}\right)}$$

Approximations:

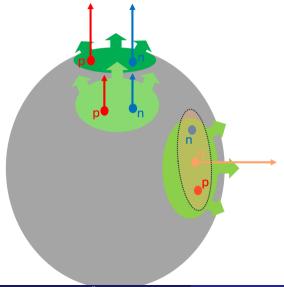
- Gaussian profile in rapidity and in the transverse direction,
- weak transverse expansion
- saddle point integration

$$\langle \mathcal{C}_d \rangle \approx \left\{ \left(1 + \left(\frac{d}{2\mathcal{R}_{\perp}(m)} \right)^2 \right) \sqrt{1 + \left(\frac{d}{2\mathcal{R}_{\parallel}(m)} \right)^2} \right\}^{-1}$$

Homogeneity lengths:

$$\mathcal{R}_{\perp} = rac{\Delta
ho}{\sqrt{1+(m_t/T)\eta_f^2}} \qquad \mathcal{R}_{\parallel} = rac{ au_0\,\Delta\eta}{\sqrt{1+(m_t/T)(\Delta\eta)^2}}$$

Homogeneity regions, homogeneity lengths, length scales



• Particles of given momentum are produced only by a portion of fireball with similar velocity—the homogeneity region

• the size of the homogeneity region is given by flow gradients and temperature

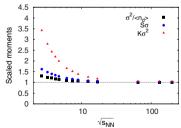
- Length scales
 - homogeneity length
 - size of the deuteron

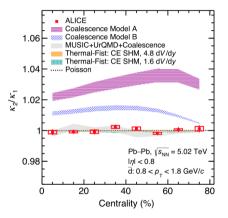
Distinguishing coalescence: deuteron number fluctuations

[Z. Fecková, et al., Phys. Rev. C 93 (2016) 054906]

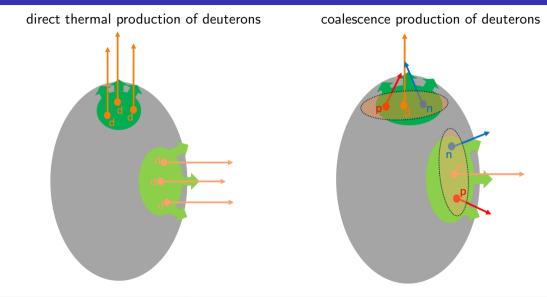
Measure the fluctuations of deuteron number.

- Thermal model prediction: Poissonian fluctuations
- Coalescence:
 - protons and neutrons fluctuate according to Poissonian
 - deuteron number proportional to $p \cdot n$
 - Enhanced fluctuations in case of coalescence





Homogeneity lengths and the elliptic flow of clusters



Simulate v_2 of deuterons—the strategy

- set-up Blast Wave model with azimuthal anisotropy
- assume Partial Chemical Equilibrium (lower FO temperature than T_{ch})
- the model must reproduce p_t -spectra and $v_2(p_t)$ of protons and pions
- simulate p_t spectra and $v_2(p_t)$ of deuterons in blast-wave model and in coalescence, and look for differences
- features of the model:
 - includes resonance decays
 - Monte Carlo simulation (SMASH: modified HadronSampler and decays)
 - built-in anisotropy in expansion flow and in fireball shape
 - includes modification of distribution function due to viscosity
 - freeze-out time depending on radial coordinate
- obtain T and transverse expansion from fitting p_t spectra of p and π (and K, A)
- then obtain anisotropy parameters from $v_2(p_t)$
- simulate thermal production of deuterons
- simulate coalescence of deuterons (by proximity in phase-space)

Extended Monte Carlo Blast-Wave model: freeze-out hypersurface

The Cooper-Frye formula:

$$Erac{d^3N_i}{dp^3} = \int_{\Sigma} d^3\sigma_\mu p^\mu f(x,p) \, ,$$

The freeze-out hypersurface:

$$x^{\mu} = (\tau(r) \cosh \eta_{s}, r \cos \Theta, r \sin \Theta, \tau(r) \sinh \eta_{s})$$

$$\tau(r) = s_{0} + s_{2}r^{2}, \qquad \eta_{s} = \frac{1}{2} \ln \left(\frac{t+z}{t-z}\right)$$

$$0 = \frac{1}{2} \left[\frac{1}{2} + \frac$$

10

8

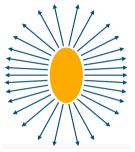
4

r [fm/c] 9

 $d^{3}\sigma^{\mu} = (\cosh \eta_{s}, 2s_{2}r \cos \Theta, 2s_{2}r \sin \Theta, \sinh \eta_{s}) r\tau_{f}(r) d\eta_{s} dr d\Theta,$

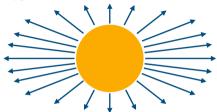
Extended Monte Carlo Blast-Wave model: azimuthal anisotropies

Shape anisotropy:



 $R(\Theta) = R_0 \left(1 - \frac{a_2}{a_2} \cos(2\Theta)\right)$

Flow anisotropy:



 $u^{\mu} = (\cosh \eta_s \cosh \rho(r), \sinh \rho(r) \cos \Theta_b, \\ \sinh \rho(r) \sin \Theta_b, \sinh \eta_s \cosh \rho(r))$

 $\bar{r} = r/R(\Theta)$

$$\rho(\bar{r},\Theta_b)=\bar{r}\rho_0\left(1+2\rho_2\cos(2\Theta_b)\right)$$

Identified $v_2(p_t)$ for different species allows resolving them.

Boris Tomášik (ČVUT & UMB)

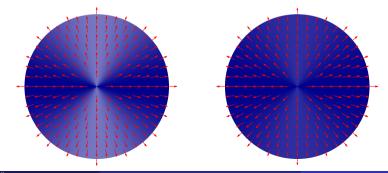
Deuterons in heavy-ion collisions

Detour comment: the (STAR parametrisation) blast-wave formula for v_2

This is sometimes referred to as "the blast-wave formula":

$$v_{2} = \frac{\int_{0}^{2\pi} d\phi \left(1 + 2s_{2}\cos(2\phi)\right)\cos(2\phi) I_{2}\left(\frac{p_{t}\sinh\eta_{t}(\phi)}{T}\right) K_{1}\left(\frac{m_{t}\cosh\eta_{t}(\phi)}{T}\right)}{\int_{0}^{2\pi} d\phi \left(1 + 2s_{2}\cos(2\phi)\right) I_{0}\left(\frac{p_{t}\sinh\eta_{t}(\phi)}{T}\right) K_{1}\left(\frac{m_{t}\cosh\eta_{t}(\phi)}{T}\right)}$$

azimuthal variation of the average transverse velocity: $\eta_t = \bar{\rho}_0(1 + 2\rho_2 \cos(2\phi))$

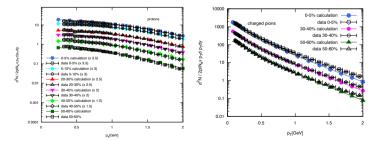


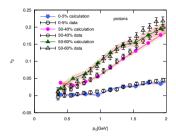
Boris Tomášik (ČVUT & UMB)

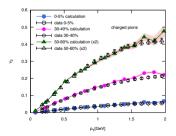
Model calibration

centrality	$T[{ m MeV}]$	$ ho_0$	R_0 [fm]	$\textit{s}_0[\mathrm{fm/c}]$	a 2	$ ho_2$
0-5%	95	0.98	15.0	21 ± 2	0.016	0.008
30-40%	106	0.91	10.0	9 ± 1	0.085	0.03
50-60%	118	0.80	6.0	6 ± 0.5	0.15	0.02

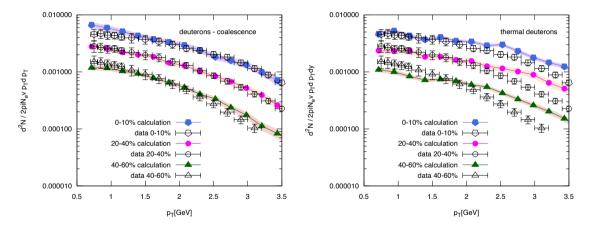
 $s_2 = -0.02 \,\, {
m fm}^{-1}$





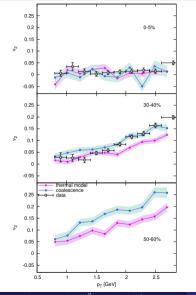


Results for deuterons: *p*t spectra

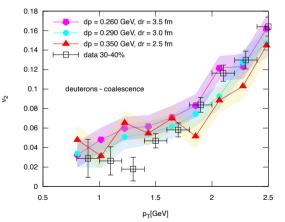


Boris Tomášik (ČVUT & UMB)

Results for deuterons: v_2



Coalescence for $\Delta p < \Delta p_{max}$ and $\Delta r < \Delta r_{max}$.



Boris Tomášik (ČVUT & UMB)

Deuterons in heavy-ion collisions

A hybrid simulation

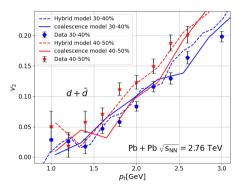
Pb+Pb collisions, $\sqrt{s_{NN}} = 2.76$ TeV

Model setup

- initial condition: TRENTO 3D [W. Ke, et al., Phys. Rev. C 96, 044912 (2017)]
- hydrodynamic simulation: vHLLE [I. Karpenko, et al., Comput. Phys. Commun 185, 3016–3027 (2014)]
- transport afterburner; SMASH [J. Weil et al. [SMASH collab], Phys.Rev.C 94,, 054905 (2016)]

Tuned to reproduce light hadron p_t spectra and v_2 Simulated $500 \times 3000 = 1.5 \times 10^6$ events

Elliptic flow of deuterons



more details

 \rightarrow flash talk and poster by Tomáš Poledníček

• Deuteron (and cluster) production is a femtoscopic probe

- Elliptic flow: can it resolve he mechanism of cluster production?
 - Extended blast-wave model: YES
 - Hybrid simulation: probably not (why?)
 - Simulations of larger clusters? (statistically hungry)
 - Simulations at lower energies—more clusters produced

[R. Vozábová, B. Tomášik, Phys. Rev. C 109, 064908 (2024), arXiv:2402.06327]