Lambda baryon production in nucleus-nucleus collisions at the NA61/SHINE experiment

Yuliia Balkova (University of Silesia in Katowice) for the NA61/SHINE collaboration

NA61/SHINE detector

NA61/SHINE detector: JINST 9 (2014) P06005 NA61/SHINE is a multi-purpose fixed-target experiment located at the H2 beamline at CERN North Area

NA61/SHINE research programme

Strong interaction physics:

- \triangleright study of the properties of the onset of deconfinement
- \triangleright search for the critical point of the strongly interacting matter
- ▶ direct measurement of open charm production

as well as

- ▶ measurement of hadron production for neutrino programmes at J -PARC and Fermilab
- \triangleright measurement of nuclear fragmentation cross -sections and hadron production for cosmic -ray physics

Onset of deconfinement

- WNE
- A measure of strangeness-to-entropy ratio, which differs between the confined phase (hadrons) and the QGP (quarks and gluons) can probe the onset of deconfinement
- No maximum observed in systems lighter than Pb+Pb

Λ identification

 \triangleright reconstruction based on decay topology, weak decay channel is used: $Λ \rightarrow pπ^-$

- results corrected for losses due to the geometrical acceptance and reconstruction inefficiency, applied selections, branching ratio, and feed-down from the decays of heavier hyperons
- quality of analysis tested with lifetime measurement

 first-ever double-differential spectra in rapidity-transverse momentum phase space for Λ baryons produced in Ar+Sc collisions

Rapidity spectra of Λ in Ar+Sc collisions

NA61/SHINE preliminary

 S . INE

EPOS and SMASH underestimate Λ production at all analyzed beam momenta

Rapidity spectra of Λ in different collision systems

NA61/SHINE*: p+p, Ar+Sc* NA49*: C+C, Si+Si, Pb+Pb*

SWINE

 \triangleright spectra are **normalized** by the mean number of wounded nucleons N_W

> spectra of \wedge in Ar+Sc and Pb+Pb collisions come closer with increasing beam momentum

Collision energy dependence of Λ production in Ar+Sc

NA61/SHINE preliminary

 SMASH underestimates both the multiplicities at mid-rapidity and the mean multiplicities by more than a factor of two, whereas the EPOS prediction is closer to the experimental results, especially at the highest energy

Collision energy dependence of Λ production

- \triangleright the values in Ar+Sc are closer to Pb+Pb than to p+p
- \triangleright qualitatively the same dependence for midrapidity and mean multiplicities of Λ in Ar+Sc as for other collision systems

NA61/SHINE*: p+p, Ar+Sc;* NA49*: C+C, Si+Si, Pb+Pb;* NA57: *Pb+Pb;* STAR*: Au+Au;* PHENIX*: Au+Au;* E891*: Au+Au;* E895*: Au+Au;* E896*: Au+Au;* HADES*: Ar+KCl, Au+Au;* bubble chamber experiments*: p+p*

4/12/2024 Yuliia Balkova (University of Silesia) 10

INE

System size dependence of Λ production

 linear scaling of Λ production with the mean number of wounded nucleons in nuclear collisions

> simple scaling of values from p+p underestimates \wedge production in heavier systems

Collision energy dependence of strangeness-to-pion ratio s^{tine}

- \triangleright similar decline of the Λ π ratio in Ar+Sc to the
	- one observed in Pb+Pb
- \triangleright no maximum observed in E_s in Ar+Sc contrary to the one observed in Pb+Pb

NA61/SHINE*: p+p, Ar+Sc;* NA49*: Pb+Pb;* E891*: Au+Au;* E895*: Au+Au;* E896*: Au+Au;* bubble chamber experiments*: p+p*

- EPOS and SMASH models do not describe the presented results satisfactorily
- qualitatively similar system size and energy dependence for ^Λ production in Ar+Sc collisions as the one observed in heavier systems, such as Pb+Pb
- \triangleright a similar decline of the Λ/π ratio in Ar+Sc to the one observed in Pb+Pb
- \triangleright no maximum observed in the total strangeness-to-pion ratio in Ar+Sc contrary to Pb+Pb
- \triangleright exciting times for exploring strangeness ahead

Thank you for your attention!

All comments and questions are very welcome: yuliia.balkova@cern.ch

World data on Λ production

- ▶ *NA61/SHINE*: *p+p (40 GeV/c: preliminary, 158 GeV/c: Eur. Phys. J. C 76 (2016), 198), Ar+Sc (preliminary);*
- NA49*: C+C, Si+Si (Phys. Rev. Lett.* 94 *(2005), 052301), Pb+Pb (Phys. Rev. C* 78 *(2008), 034918);*
- NA57: *Pb+Pb (Phys. Lett. B* 595 *(2004), 68-74, J. Phys. G* 32 *(2006), 427-442);*
- STAR*: Au+Au (Phys. Rev. C* 102 *(2020), 034909, Phys. Rev. C* 83 *(2011), 024901, Phys. Rev. Lett.* 89 *(2002), 092301, Phys. Rev. Lett.* 98 *(2007), 062301);*
- PHENIX*: Au+Au (Phys. Rev. Lett.* 89 *(2002), 092302);*
- E891*: Au+Au (Phys. Lett. B* 382 *(1996), 35-39);*
- E895*: Au+Au (Nucl. Phys. A* 698 *(2002), 495-498);*
- E896*: Au+Au (Phys. Rev. Lett*. 88 *(2002), 062301);*
- FOPI: *Ni+Ni (Phys. Rev. C* 76 *(2007), 024906);*
- HADES*: Ar+KCl (Eur. Phys. J. A* ⁴⁷ *(2011), 21), Au+Au (Phys. Lett. B* 793 *(2019), 457-463);*
- bubble chamber experiments*: p+p (overview at Z. Phys. C* 71 *(1996), 55-64)*

World data on K production

- NA61/SHINE*: p+p (40 GeV/c: arXiv:2402.17025, 158 GeV/c: Eur. Phys. J. C* 82 *(2022), 96), Ar+Sc (Eur. Phys. J. C* 84 *(2024), 416);*
- NA49*: C+C, Si+Si (Phys. Rev. Lett.* 94 *(2005), 052301), Pb+Pb (Phys. Rev. C* ⁷⁷ *(2008), 024903);*
- E802: *Au+Au (Phys. Rev. C* 58 *(1998), 3523);*
- FOPI: *Ni+Ni (Phys. Rev. C* 76 *(2007), 024906);*
- bubble chamber experiments*: p+p (overview at Z. Phys. C* 71 *(1996), 55-64)*
- NA61/SHINE*: p+p (40 GeV/c: preliminary, 158 GeV/c: EPJC* 76 *(2016), 198), Ar+Sc (preliminary);*
- NA49*: C+C, Si+Si (Phys. Rev. Lett.* 94 *(2005), 052301), Pb+Pb (Phys. Rev. C* ⁷⁷ *(2008), 024903);*
- E802: *Au+Au (Phys. Rev. C* ⁵⁷ *(2008), R466);*
- E895*: Au+Au (Phys. Rev. C* 68 *(2003), 054905);*
- bubble chamber experiments*: p+p (overview at Z. Phys. C* ⁶⁵ *(1995), 215-223)*

Analysis workflow

 $S^{\prime\prime}$ INE

System size dependence of strangeness-to-pion ratio **SUINE**

NA61/SHINE preliminary, WNM: Nucl. Phys. B111, 461 (1976)

 \triangleright saturation of the strangeness enhancement towards the higher energies

Model comparisons

- \triangleright EPOS the reaction proceeds from the excitation of strings according to Gribov-Regge theory to string fragmentation into hadrons.
- ► UrQMD starts with a hadron cascade based on elementary cross sections for resonance production which either decay (mostly at low energies) or are converted into strings which fragment into hadrons (mostly at high energies).
- \blacktriangleright AMPT uses the heavy ion jet interaction generator (HIJING) for generating the initial conditions, Zhang's parton cascade for modeling partonic scatterings and the Lund string fragmentation model or a quark coalescence model for hadronization.
- ► PHSD is a microscopic offshell transport approach that describes the evolution of a relativistic heavy-ion collision from the initial hard scatterings and string formation through the dynamical deconfinement phase transition to the quark-gluon plasma as well as hadronization and the subsequent interactions in the hadronic phase.
- \triangleright SMASH uses the hadronic transport approach where the free parameters of the string excitation and α decay are tuned to match the experimental measurements in inelastic $p+p$ collisions.

Selection of events in all model calculations follows the procedure for central collisions corresponding to the experimental results (selection based on forward spectator energy).

Backup

Main strangeness carriers in A+A collisions at high μ_B

Backup

Strange definitions

Strangeness production $\langle N_{s\bar{s}}\rangle$ – number of s- \bar{s} pairs produced in a collision.

$$
2 \cdot \langle N_{s\bar{s}} \rangle = \langle \Lambda + \bar{\Lambda} \rangle + \langle K + \bar{K} \rangle + \langle \phi \rangle + \dots
$$

$$
2 \cdot \langle N_{s\bar{s}} \rangle \approx \langle \Lambda \rangle + \langle K^+ + K^- + K^0 + \bar{K^0} \rangle
$$

Entropy production α $\langle \pi \rangle$

The experimental ratio of strangeness to entropy can be defined as:

$$
E_S = \frac{\langle \Lambda \rangle + \langle K + \bar{K} \rangle}{\langle \pi \rangle} \approx \frac{2 \cdot \langle N_{s\bar{s}} \rangle}{\langle \pi \rangle}
$$

$$
\langle N_{s\bar{s}} \rangle \approx \langle K^+ \rangle + \langle K^0 \rangle \approx 2 \cdot \langle K^+ \rangle, \qquad \langle \pi \rangle \approx \frac{3}{2} (\langle \pi^+ \rangle + \langle \pi^- \rangle)
$$

$$
\frac{\langle N_{s\bar{s}} \rangle}{\langle \pi \rangle} \approx \frac{2}{3} \frac{\langle K^+ \rangle}{\langle \pi^+ \rangle}, \qquad E_S \approx \frac{4}{3} \frac{\langle K^+ \rangle}{\langle \pi^+ \rangle}
$$