Early time nonequilibrium heavy quark diffusion and energy loss

Kirill Boguslavski

Institute for Theoretical Physics TU Wien, Austria FШF

Der Wissenschaftsfonds.

24th Zimányi Winter School on Heavy-ion Physics

> Budapest, December 05, 2024

Motivation

- 2 Initial stages
- 3 Hard probes and transport coefficients
- 4 Excitations and a new transport peak

5 Conclusion

Motivation

- 2 Initial stages
- 3 Hard probes and transport coefficients
- 4 Excitations and a new transport peak

5 Conclusion

Stages in heavy-ion collisions

MADAI collaboration

- High-energy collisions \Rightarrow **QGP** created
- Cooling during evolution, go through different phases
 - \Rightarrow pre-equilibrium QGP (initial stages) \rightarrow fluid QGP \rightarrow hadrons
- Pre-equilibrium QGP: testing the very nature of quantum physics
 - \Rightarrow Gluons first as (classical) waves \rightarrow scatterings of (quasi-)particles

Goals

Learn about real-time properties of QCD in extreme conditions

Kirill Boguslavski (TU Wien)

Non-equilibrium QCD

What are the initial stages of the quark-gluon plasma (QGP)?

- Significant progress from QCD calculations over the past decade(s)
- Interplay of different methods and models

Experimental traces

How can we probe them experimentally? What are their signatures?

- What are the medium properties of the pre-equilibrium QGP?
- How do they affect hard probes? What do we learn?

1 Motivation

2 Initial stages

3 Hard probes and transport coefficients

Excitations and a new transport peak

5 Conclusion

Pre-equilibrium QGP: descriptions (for couplings $g^2 \ll 1$)

- initially: classical-statistical simulations, 'Glasma'
 - \Rightarrow large gluon fields $A \sim 1/g$, full initial conditions
 - $\Rightarrow\,$ nonlinear dynamics of interacting classical waves
 - \Rightarrow Valid while occupancies large $f(t, p) \approx \langle AA
 angle p \gg 1$
- then, as energy decreases (dilution): kinetic theory
 - \Rightarrow Boltzmann equation for f

$$(\partial_t + \boldsymbol{v} \cdot \boldsymbol{\nabla})f = \left| \begin{array}{c} \overbrace{\boldsymbol{g}} \\ \overbrace{\boldsymbol{g}} \\ \end{array} \right|^2 + \left| \begin{array}{c} \overbrace{\boldsymbol{g}} \\ \overbrace{\boldsymbol{g}} \\ \end{array} \right|^2$$

$$\frac{\partial f_{\vec{p}}}{\partial \tau} - \frac{p_z}{\tau} \frac{\partial f_{\vec{p}}}{\partial p_z} = -\mathcal{C}^{2\leftrightarrow 2}[f_{\vec{p}}] - \mathcal{C}^{1\leftrightarrow 2}[f_{\vec{p}}]$$

Arnold, Moore, Yaffe, JHEP 01, 030 (2003)

Quantum wave particle duality, approximative descriptions

classical fields $A(t, \vec{x})$ ('waves') ightarrow interacting particle distribution $f(t, \vec{p})$

Kirill Boguslavski (TU Wien)

Early time HQ diffusion

7 / 24

Strong initial fields: classical-statistical lattice simulations

Initial state: Glasma – large longitudinal fields

McLerran, Venugopalan (1999); Krasnitz, Venugopalan (1999, 2000, 2001); Krasnitz, Nara, Venugopalan (2001, 2003); Lappi (2003, 2006, 2011); Lappi, McLerran (2006); Schenke, Tribedy, Venugopalan (2012); Gelfand, Jpp, Müller (2016, 2017); ...

Plasma instabilities – from boost-invariant Glasma to highly occupied (mainly gluonic) plasma

Mrowczynski (1993): Arnold, Lenaghan, Moore (2003): Romatschke, Strickland (2003): Romatschke, Venugopalan (2006); Attems, Rebhan, Strickland (2012); Fukushima, Gelis (2012); Berges, KB, Schlichting, (2012, 2013); Epelbaum, Gelis (2013); ...

- Classical self-similar attractor far from equilibrium
 - universal dynamics of over-occupied plasma
 - \Rightarrow agrees with 1. stage of 'bottom-up' scenario

Berges, KB, Schlichting, Venugopalan (2013, 2014); Kurkela, Zhu (2015); ...

Far-from-equilibrium universality class with scalars \Rightarrow

Berges, KB, Schlichting, Venugopalan (2015); ...

Berges, Schenke, Schlichting, Venugopalan (2014)

Bottom-up thermalization: QCD kinetic theory

- When quasiparticles have formed: Kinetic theory becomes applicable
 - *Note:* Assumes narrow excitations in spectral functions, which may not be true at low momenta for strong anisotropy KB, Kurkela, Lappi, Peuron (2018, 2019, 2021)
- Bottom-up thermalization: Baier, Mueller, Schiff, Son (2001)
 - Classical attractor (see above)
 - 2 Anisotropy freezes
 - 8 Radiational breakup
- QCD effective kinetic theory (EKT) simulations Arnold, Moore, Yaffe (2003); Kurkela, Zhu (2015); Kurkela, Mazeliauskas (2019);

$$-\frac{\partial f_{\vec{p}}}{\partial \tau} = \mathcal{C}^{1\leftrightarrow 2}[f_{\vec{p}}] + \mathcal{C}^{2\leftrightarrow 2}[f_{\vec{p}}] - \frac{p_z}{\tau} \frac{\partial f_{\vec{p}}}{\partial p_z}$$

• EKT: smooth transition to hydrodynamics; KoMPoST: EKT + $\delta T^{\mu\nu}(\tau, \vec{x})$ perturbations

Kurkela, Zhu (2015); Kurkela, Mazeliauskas, Paquet, Schlichting, Teaney (2018)

Bottom-up evolution

Kurkela, Zhu (2015); KB, Kurkela, Lappi, Lindenbauer, Peuron (2023)

Talk by G. Denicol

Initial stages in heavy-ion collisions (weak- g^2 perspective)

QCD effective kinetic theory simulations

1 Motivation

2 Initial stages

3 Hard probes and transport coefficients

Excitations and a new transport peak

5 Conclusion

Hard probes show signatures of QGP

Hard probes are modified while traversing the QGP

Examples: heavy quarks, quarkonia $(q\bar{q})$, jets $(p \gg T)$

Transport coefficients from pre-equilibrium QGP

Jets, heavy (c, b) quarks: potential for signatures of initial stages medium interactions \Rightarrow QGP properties encoded in observables

- Quarks/jets get 'kicks' $\dot{p}_i(au) = \mathcal{F}_i(au)$
- Heavy-quark diffusion coefficient $\kappa_i = \frac{d}{d\tau} \langle p_i^2 \rangle$ \Rightarrow heavy quark (c, b), small momentum $p \ll M$

- κ enters Lindblad eq. for quarkonium dynamics Brambilla, Escobedo, [Soto], [Strickland], Vairo, [v.d. Griend, Weber] (2016, 2021)
 - \Rightarrow describe suppression of bottomonium ($bar{b}$ states)
- Jet quenching parameter $\hat{q}_i = \frac{d}{d\tau} \langle p_{\perp,i}^2 \rangle$ \Rightarrow jet with high momentum $p \gg Q_s, T$
- They encode also pre-equilibrium dynamics

KB, Kurkela, Lappi, Lindenbauer, Peuron (2023)

Transport coefficients encode pre-equilibrium dynamics

- Impact on jet energy loss, substructure? \Rightarrow Talk by Joao Barata
- Pheno. impact of $\kappa_i(au)$ on heavy quarks? \Rightarrow Talk by Pooja

Some recent studies:

Transport coefficients during initial stages + impact on hard probes

Mrowczynski (2018); Ruggieri, Das (2018); Sun, Coci, Das, Plumari, Ruggieri, Greco (2019); Ipp, Müller, Schuh (2020); KB, Kurkela, Lappi, Peuron (2020); Khowal, Das, Oliva, Ruggieri (2022); Carrington, Czajka, Mrowczynski (2020, 2022); Avramescu, Baran, Greco, Ipp, Müller, Ruggieri (2023); KB, Kurkela, Lappi, Lindenbauer, Peuron (2023); Du (2023); Barata, Sadofyev, Wang (2023); Andres, Apolinário, Dominguez, Martinez, Salgado (2023); Pandey, Schlichting, Sharma (2024); Zhou, Brewer, Mazeliauskas (2024); Barata, Hauksson, Lopez, Sadofyev (2024); Priyam Adhya, Tywoniuk (2024); ...

κ and \hat{q} during Glasma phase

Avramescu, Baran, Greco, Ipp, Müller, Ruggieri PRD 107, 114021 (2023); 2307.07999

• Classical-statistical simulations of hard probes in the Glasma phase

• Extraction of κ_i and \hat{q}_i

Ipp, Müller, Schuh (2020); KB, Kurkela, Lappi, Peuron (2020); Carrington, Czajka, Mrowczynski (2022); Khowal, Das, Oliva, Ruggieri (2022); Avramescu et al. (2023); Pandey, Schlichting, Sharma (2024); ...

- Often using $\kappa, \hat{q} \sim \int \mathrm{d} au \langle \mathcal{FF}
 angle$, here via particle-in-cell method
- Large values, anisotropic $\kappa_z > \kappa_T$ and $\hat{q}_z > \hat{q}_y$ (z is beam direction)
- Why are they large? Why do κ_z and \hat{q}_z become negative?

Kirill Boguslavski (TU Wien)

κ and \hat{q} during kinetic regime

KB, Kurkela, Lappi, Lindenbauer, Peuron, for κ PRD [2303.12520]; for ĝ: Phys. Lett. B (2024) [2303.12595], PRD [2312.00447]

- \hat{q} smoothly connects Glasma and hydro, κ not so much
- Mostly the same ordering $\kappa_z > \kappa_T$ and $\hat{q}_z > \hat{q}_y$
- Evolution in kinetic regime understood, what about Glasma? (later)

16/24

Limiting attractors

KB, Kurkela, Lappi, Lindenbauer, Peuron, Phys. Lett. B (2024) [2312.11252]

- Limiting attractors from extrapolating coupling $\lambda = 4\pi N_c \alpha_s$
- Hydrodynamic lim. attr. ($\lambda \rightarrow \infty$): very good description of P_L/P_T
- Bottom-up lim. attr. ($\lambda
 ightarrow$ 0): early description of $\hat{q}^{yy}/\hat{q}^{zz}$, κ_T/κ_z
- \Rightarrow some 'ratios' better described with bottom-up even at $\lambda \sim \mathcal{O}(10)$
 - Also: HQ drag and diffusion coeff. scale at hydro attractor (Du, PRC (2024))

1 Motivation

- 2 Initial stages
- 3 Hard probes and transport coefficients
- 4 Excitations and a new transport peak

5 Conclusion

Towards understanding κ_i in the Glasma

L. Backfried, KB, P. Hotzy, 2408.12646

Connect to collective excitations in the pre-equilibrium QGP

- Spectral functions $ho(t,\omega,p)\sim \langle [\hat{A},\hat{A}]
 angle$ encode excitation spectrum!
- Compute $\langle EE \rangle$ in class.-stat. + algorithm for ho (KB, Kurkela, Lappi, Peuron (2018))

Models (non-exp. geometry)

- 2+1D: Yang-Mills $S_{\rm YM}^{\rm 2D}$
- 2D+sc: $S_{\rm YM}^{\rm 2D}$ + adj. scalar A_z
- ⇒ Glasma-like but at classical attractor + Minkowski

extending [KB, Kurkela, Lappi, Peuron (2019, 2021)]

• HTL perturbation theory breaks down \Rightarrow broad Gaussian excitations

• New transport peak h_G^{TP} at $\omega = 0$ for $p \lesssim m_D \Rightarrow$ nonperturbative!

Kirill Boguslavski (TU Wien)

Early time HQ diffusion

Heavy-quark diffusion coefficients in 2+1D plasmas

2+1D gluonic 2κ

$$2\kappa(t,\Delta t) \approx \frac{g^2}{N_c} \int_t^{t+\Delta t} \mathrm{d}t' \langle EE \rangle(t,t',\Delta \vec{x}=0), \quad \Rightarrow \text{gauge invariant} \\ \approx \frac{g^2}{N_c} \int_{\vec{p}} \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \frac{\sin(\omega\Delta t)}{\omega} \sum_{\alpha=T,L} \langle EE \rangle_{\alpha}(t,\omega,p)$$

Glasma reminder

- Initial linear rise $\kappa_i \sim \Delta t \langle EE \rangle_i(t,t)$ (KB, Kurkela, Lappi, Peuron ('20))
- Qualitatively similar to Glasma: 2κ finite (diffusive), κ_z around 0
- Gauge-fixed correlators $\langle EE \rangle_{\alpha}(t, \omega, p)$ reconstruct evolution

Kirill Boguslavski (TU Wien)

Early time HQ diffusion

Glasma-like scalar κ_z

Manipulate correlations \Rightarrow study impact

• Significant impact on late- Δt evolution

 \Rightarrow Evidence of a new transport peak in Glasma-like systems!

• Preliminary: transport peak also in Glasma (KB, Hotzy, Müller, in progress)

⇒ Enhanced transport coefficients, relevance for initial stages?

Kirill Boguslavski (TU Wien)

Early time HQ diffusion

21/24

${\sf Manipulate\ correlations} \Rightarrow {\sf study\ impact\ II}$

• Change peak width $\gamma \Rightarrow$ mismatch with simulations

 $\Rightarrow 2\kappa$ requires broad $\langle EE \rangle_T$ and κ_z narrow $\langle EE \rangle_z$

• We also demonstrate: scalars are enhanced at low $p \lesssim m_D$ (Backup)

1 Motivation

- 2 Initial stages
- 3 Hard probes and transport coefficients
- Excitations and a new transport peak

5 Conclusion

Conclusion

• Hard probes (jets, heavy quarks, quarkonia): medium interactions

- \Rightarrow Coefficients κ , \hat{q} in Glasma and bottom-up \rightarrow large, anisotropic
- \Rightarrow Kinetics: hydrodynamic and limiting attractors useful
- \Rightarrow Phenomenology: Impact/signatures of pre-equilibrium dynamics?
- Collective excitations of pre-equilibrium QGP influence hard probes
 - \Rightarrow Evidence of new tranport peak in Glasma-like plasmas
 - \Rightarrow Significant impact on transport coefficients

Thank you for your attention!

 $Q_{\tau} \tau = \alpha_{\tau}^{-1/2}$

Backup slides

Kinetic theory \Rightarrow Bottom-up thermalization scenario

Bottom-up scenario

Baier, Mueller, Schiff, Son, PLB (2001)

- Consists of three stages
 - Classical attractor
 - 2 Anisotropy freezes
 - 8 Radiational breakup
- Different bottom-up stages separated by markers (λ = g²N_c)
 - ★ large pressure anisotropy $P_T \gg P_L$, occupancy $f \sim 1/\lambda$
 - minimum (mean) occupancy f
 - ∇ close to isotropic $P_T/P_L = 2$

Kurkela, Zhu (2015); *version from:* KB, Kurkela, Lappi, Lindenbauer, Peuron (2023)

• Pressure $P_{T,L} \sim \int d^3 p \frac{p_{\perp,z}^2}{p} f$

• Mean
$$\langle O \rangle = \int d^3 p f(p) O(p)$$

QGP description: effective kinetic theory (EKT)

- When quasiparticles have formed: Kinetic theory applicable
 - Note: Assumes narrow excitations in spectral functions, which may not be true at low momenta for strong anisotropy (Backup in ' ρ ': 'Gluonic 2+1D')

KB, Kurkela, Lappi, Peuron (2018, 2019, 2021)

• Time evolution described by Boltzmann equation at LO

Arnold, Moore, Yaffe, JHEP 01, 030 (2003)

• Heavy-quark coefficient κ_i: Moore, Teaney (2005); Caron-Huot, Moore (2008)

Transverse vs. longitudinal diffusion

KB, Kurkela, Lappi, Lindenbauer, Peuron, 2303.12520

- $\kappa_T > \kappa_z$ during over-occupied stage (z is longitudinal/beam axis)
- $\kappa_T < \kappa_z$ after \star due to momentum anisotropy and low occupancy
- Most of the time $\kappa_T < \kappa_z$, anisotropy larger at weak coupling

Kirill Boguslavski (TU Wien)

Early time HQ diffusion

4/9

Classical-statistical simulations

- At initial time *t*₀ set (quantum) initial conditions (IC):
- \Rightarrow Choose $\langle AA \rangle$, $\langle EE \rangle$ in x or p space
 - Approximate quantum dynamics with classical EOMs $D_{\mu}F^{\mu\nu} = 0$ \Rightarrow Gauge co-variant lattice formulation using links $U_i(x) = e^{ig a_i A_i(x)}$
 - \Rightarrow Gauge co-variant fattice formulation using links $U_j(x) = e^{-y}$, (y)
 - Obtain observables at t by averaging over trajectories (same IC)

- Valid if occupancies large $f(t,p) \approx \langle AA
 angle p pprox \langle EE
 angle /p \gg 1$
- Applicability limited to earliest times!

Quasiparticles? Extract gluon spectral function ρ

Classical-statistical $SU(N_c)$ simulations + linear response theory

KB, Kurkela, Lappi, Peuron, PRD 98, 014006 (2018)

- Similar algorithm for fermions
- Split $A(t, \vec{x}) \mapsto A(t, \vec{x}) + \delta A(t, \vec{x})$ at t, perturb with plane wave $j_0(\vec{p}) \,\delta(t'-t)$
- Response $\langle \delta A(t', \vec{p}) \rangle = G_R(t', t, \vec{p}) j_0(\vec{p})$
- Linearized EOM for $\delta A(t, \vec{x})$ such that Gauss law conserved (also in gauge-cov. formulation) Kurkela, Lappi, Peuron, EUJC 76 (2016) 688

•
$$\theta(t'-t)\left[\rho(t',t,p)\right] = G_R(t',t,p)$$

• Fourier transform $\rho(\bar{t}, \omega, p)$ $(\bar{t} = \frac{1}{2}(t + t'))$

Very similar methods for scalars:

Aarts (2001); Piñeiro Orioli, Berges (2019); Schlichting, Smith, von Smekal (2020); KB, Piñeiro Orioli (2020); ...

Kirill Boguslavski (TU Wien)

6/9

Spectral and statistical correlation functions

- Equal-time correlator $\langle \{\hat{E}(t), \hat{E}(t)\} \rangle \propto f(t, p)$ is distribution \Rightarrow But what are the relevant excitations?
- Knowledge of spectral function needed ($\dot{
 ho} = \partial_t
 ho$, $E = \partial_t A$)

$$\dot{\rho}(x,x') = \frac{i}{N_c^2 - 1} \left\langle \left[\hat{E}(x), \hat{A}(x') \right] \right\rangle$$

• Statistical correlator $\langle \textit{EE} \rangle~(\equiv \ddot{\textit{F}})$ in general independent of $\dot{\rho}$

$$\langle EE \rangle(x,x') = \frac{1}{2(N_c^2 - 1)} \left\langle \left\{ \hat{E}(x), \hat{E}(x') \right\} \right\rangle$$

- Fourier transf. in t t' and $\vec{x} \vec{x}'$ to frequency ω and momentum \vec{p} Approximation: normally at fixed $\bar{t} = \frac{1}{2}(t + t')$, we hold $t \approx \bar{t}$
- In classical-statistical simulations

$$\langle EE \rangle(t,t',p) = \frac{1}{N_c^2 - 1} \left\langle E(t,\vec{p})E^*(t',\vec{p}) \right\rangle$$

• Gauge: temporal $A_0 = 0 + \text{Coulomb-type } \partial^j A_j \Big|_t = 0$

What excitations drive the dynamics in the QGP?

Study microscopics of the Quark-Gluon plasma

- Spectral functions $ho(t,\omega,p)\sim \langle [\hat{A},\hat{A}]
 angle$ encode excitation spectrum!
- Compute $\langle \textit{EE}
 angle$ in class.-stat. + algorithm for ho (KB, Kurkela, Lappi, Peuron (2018))
- Generalized FDR observed $\langle \textit{EE} \rangle \sim \omega \rho$

• Gauge fixed: temporal $A_0 = 0 + \text{Coulomb-type } \partial^j A_j \Big|_t = 0$

8/9

2+1D: Manipulate correlations \Rightarrow study impact III

$$\kappa_z(t,\Delta t) \approx \frac{g^2}{N_c} \int_{\vec{p}} \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \frac{\sin(\omega\Delta t)}{\omega} \langle EE \rangle_z(t,t,p) \frac{\dot{\rho}_z(t,\omega,p)}{\dot{\rho}_z(t,t,p)}$$

If no infrared excess of scalars, smaller oscillations
 ⇒ evidence of infrared enhancement!