24th ZIMÁNYI SCHOOL WINTER WORKSHOP ON HEAVY ION PHYSICS, 2024/12/5, Budapest, Hungary

Two topics on high density matter and heavyion physics at J-PARC

Masakiyo Kitazawa (YITP, Kyoto)

Taya, Jinno, MK, Nara, 2409.07685.

Nishimura, MK, Kunihiro, Ann. Phys. 469, 169768 (2024); PTEP 2023, 053D01; PTEP 2022, 093D02.

QCD Phase Diagram

Possible first-order transition and QCD critical point in dense region

■ Multiple QCD-CP? MK+ ('02)

Color superconducting phases in dense and cold quark matter

QCD Phase Diagram

Possible first-order transition and QCD critical point in dense region

■ Multiple QCD-CP? MK+ ('02)

Color superconducting phases in dense and cold quark matter

Beam-Energy Scan

STAR, 2012

1

Grand Canonical Ensemble

0.18

1. Optimal collision energy for investigating dense matter Taya, Jinno, MK, Nara, 2409.07685

2. Dilepton production for the signal of phase transitions

Nishimura, MK, Kunihiro, Ann. Phys. 469, 169768; PTEP 2023, 053D01; PTEP 2022, 093D02

Key Questions

-What is **the optimal collision energy** to explore the baryon-rich matter?

-How high density is accessible?

Our Answer

 $-\sqrt{s_{NN}} = 3 \text{ GeV} \text{ is enough to study } \rho = 3\rho_0.$ $-\rho/\rho_0 = 4\sim 5 \text{ may be accessible with } \sqrt{s_{NN}} = 3\sim 6 \text{ GeV}.$

Chemical Freezeout

- Highest baryon density **at chemical freezeout** at $\sqrt{s_{NN}} \simeq 6 10$ GeV?
- Not the highest density in the early stage.
- Density in earlier stage? >> Analysis in dynamical models

Baryon Density at Collision Point

Simulation by JAM $E/A = 20 {\rm GeV}, \ \sqrt{s_{_{NN}}} \simeq 6 {\rm GeV}$

- Maximum baryon density exceeds $\rho/\rho_0 \simeq 8!$
- Large event-by-event fluctuations
- How large is the high-density region? How long is the lifetime?

Volume of Dense Region

Taya, Jinno, MK, Nara, 2409.07685

Volume where the local baryon density is larger than a threshold value $ho_{
m th}$

$$V_3(
ho_{
m th},t) = \int_{
ho(x) >
ho_{
m th}} d^3 x \gamma$$

Baryon current $J^{\mu}(x)$ Baryon density $\rho(x) = \sqrt{J^{\mu}(x)J_{\mu}(x)}$ Lorentz factor $\gamma = (1 - (J/J_0)^2)^{-1/2}$

Note:

- Event-by-event basis / no event average
- Directly calculable in a dynamical model
- -We do not care about local thermalization.
 - $-V_3$ is the upper limit of thermalized volume.
 - Even non-thermal, dense region is interesting!

Simulation Setup in JAM

■ Au+Au collision for $2.4 \le \sqrt{s_{NN}} \le 20$ GeV ■ Impact parameter $b \le 3$ fm : top 5% centrality

□ Momentum-dependent mean field (MF2) Nara, Ohnishi, 2022

• Setup reproducing $\sqrt{s_{NN}}$ dep. of $dv_1/d\eta$ and v_2

Smeared baryon current

discrete particle distribution \rightarrow continuous current by smearing

$$J^{\mu}(x) = \sum_{i \in \text{baryons}} B_i g(x; X_i, P_i) \frac{P_i^{\mu}}{P_i^0}$$

$$g(x; X, P) := \frac{\gamma}{(\sqrt{2\pi}r)^3} e^{-\frac{|\mathbf{x} - \mathbf{X}|^2 + (\gamma \mathbf{V} \cdot (\mathbf{x} - \mathbf{X}))^2}{2r^2}} \qquad r = 1$$

fm
$$g(x)$$

V_3 in JAM

- solid: JAM+MF Nara, Ohnishi, 2022 - shaded band: 1σ and 2σ e-v-e fluct. - dashed: JAM cascade mode - dotted: no-collision

□ Formation of dense region:
□ V₃(3ρ₀, t) = (6 fm)³
□ V₃(4ρ₀, t) = (4 fm)³
□ Large e-v-e fluctuations
→ separable by event selection?
□ Repulsive MF → weaker compression
□ Compression owing to interaction

 V_3 for various $\sqrt{S_{NN}}$

As $\sqrt{s_{NN}}$ becomes larger,

□ max $V_3(\rho_{\text{th}}, t)$ becomes larger. □ The lifetime of dense region becomes shorter.

D E-v-e fluctuations are more suppressed.

Four-Volume / Lifetime

Four Volume

$$V_4(\rho_{\rm th}) = \int_{-\infty}^{\infty} dt \int_{\rho(x) > \rho_{\rm th}} d^3 x$$
Lifetime

$$\tau(\rho_{\rm th}) = \frac{V_4(\rho_{\rm th})}{\max V_3(\rho_{\rm th}, t)}$$

Note

 V_4 may be relevant for the dilepton production rate.

 $\Box \sqrt{s_{NN}} \simeq 3$ GeV would be the best energy to create $\rho = 3 \sim 4\rho_0$ with large V_3 and τ . \Box Lower $\sqrt{s_{NN}}$ is suitable to create colder matter.

Event Selection

Event selections via highest baryon/energy density will allow us a detailed study of QCD phase diagram.

events

10

10²

 $\sqrt{s_{NN}}$

10³

Short Summary

$$-\sqrt{s_{NN}} = 3 \text{ GeV} \text{ is enough to study } \rho = 3\rho_0.$$

$$-\rho/\rho_0 = 4\sim5 \text{ may be accessible with } \sqrt{s_{NN}} = 3\sim6 \text{ GeV}.$$

Future

- Check model independence
 - Analyses in various models
- Experiments at the sweet spot $\sqrt{s_{NN}} = 2.5 \sim 6 \text{ GeV}$ - Future exps. at FAIR, NICA, HIAF, & J-PARC-HI

1. Optimal collision energy for investigating dense matter Taya, Jinno, MK, Nara, 2409.07685

2. Dilepton production for the signal of phase transitions

Nishimura, MK, Kunihiro, Ann. Phys. 469, 169768; PTEP 2023, 053D01; PTEP 2022, 093D02

Dilepton Production Rate

Generated by the decay of virtual photons
 Carry information of primordial medium

Physics accessible with DPR

- Medium temperature
- Dispersion relations
- Chiral mixing by chiral restoration
- Signal of phase transitions

□Soft modes

Divergence of the order-parameter fluctuations at a 2nd-order transition.
 Collective fluctuations become massless there.

QCD-CP : density-density fluctuationsCSC : diquark-pair field

Coupling of soft modes with dynamical observables

D Ex.: dilepton production rate

Anomalous behavior of observables near but above Tc of SC

electric conductivity
magnetic susceptibility
pseudogap

- Enhanced pair fluctuations is one of the origins of precursory phenomena.
- More significant phenomena in strongly-coupled systems.

Precursor of Color Superconductivity

MK, Koide, Kunihiro, Nemoto, '03, '05

. . .

100

-100

ω

0

Depression

in DoS above Tc

Model

NJL model (2-flavor) 200 $\mathcal{L} = \psi i \partial \!\!\!/ \psi + \mathcal{L}_S + \mathcal{L}_C$ 175 $\mathcal{L}_S = G_S \left((\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\tau\psi)^2 \right)$ 150 $\mathcal{L}_C = G_C ((\bar{\psi} i \gamma_5 \tau_A \lambda_A \psi^C) (\text{h.c.})$ 125 T [MeV]100 diquark interaction 75 **Parameters** 50 $G_S = 5.01 \text{ GeV}^{-2}, \quad \Lambda = 650 \text{MeV}, \quad m_q = 0$ 25 0 0

Phase Diagram in MFA

Order of phase transition

D 2nd in the MFA

□ can be 1st due to gauge fluctuation Matsuura+('04), Giannakis+('04) Noronha+('06), Fejos, Yamamoto('19)

Di-quark Fluctuations

-300

200

 $|\mathbf{k}|$ [MeV]

100

- □ Soft mode of CSC transition
- Strength in the space-like region

MK, Koide, Kunihiro, Nemoto, '01,'05

Photon Self-Energy: Precursor of CSC

Dilepton Production Rate

$$\frac{d^4\Gamma}{dk^4} = \frac{\alpha}{12\pi^4} \frac{1}{k^2} \frac{1}{e^{\beta\omega-1}} \mathrm{Im} \Pi^{R\mu}_{\mu}(k)$$

DEffect of Di-quarks on $\Pi^{\mu u}(k)$

Production Rate at k = 0

Nishimura, MK, Kunihiro ('22)

Red: fluctuation contribution Blue: free quarks $G_C = 0.7G_s, T_c \simeq 45 \text{ MeV}$

Di-quark fluctuations give rise to large enhancement in the low energy region ω < 200 MeV and T < 1.5T_c.
 Anomalous enhancement is not

sensitive to T.

Invariant-Mass Spectrum

Strong enhancement at low invariant mass. **Observable in the HIC?**

Dileptons from QCD Critical Point

NJL model (2-flavor)

 $\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - m)\psi + G_S((\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\tau\psi)^2)$

Parameters

 $G_S = 5.5 \text{ GeV}^{-2}, \ \Lambda = 631 \text{MeV}, \ m_q = 5.5 \text{ MeV}$

Soft Mode of QCD-CP

= fluctuation of scalar ($\overline{q}q$) channel

 $D^{R}(x) = \langle [\bar{\psi}\psi(x), \bar{\psi}\psi(0)] \rangle \theta(t) = \blacksquare$

Random Phase Approximation

$$= + + + \cdots$$

Dilepton production rate near QCD-CP

Invariant mass spectrum

Nishimura, MK, Kunihiro ('23)

10⁻² fluc $(T = 0.99 T_c)$ free $(T = 0.99 T_c)$ 200 first order fluc $(T=0.95 T_c)$ ---- free $(T=0.95 T_c)$ 10⁻³ 175 critical point fluc $(T=0.9 T_c)$ ---- free $(T=0.9 T_c)$ $d\Gamma/dm_{ll}^2~[{ m GeV}^{-2}{ m fm}^{-4}]$ 10-4 \cdots free $(T=0.8 T_c)$ fluc $(T = 0.8 T_c)$ 150 $T \left[\mathrm{MeV} ight]$ 125 10⁻⁵ 100 10⁻⁶ 75 10⁻⁷ 50 10^{-8} 25 10⁻⁹ 0 50 100 150 200 250 300 350 50 100 150 200 250 0 $\mu \,[{\rm MeV}]$ m_{ll} [MeV]

for fixed chem. pot.: $\mu = \mu_c$

□ Enhancement at low M_{ll} region near QCD-CP □ Distinguishment from diquark soft mode may be difficult.

Electric Conductivity on QCD Phase Diagram

Nishimura, MK, Kunihiro ('24)

DPR in the low-energy limit = electric conductivity **D** Two "hot spots" on the T- μ plane

Dilepton Yields: Beam-Energy Scan

Isentropic lines in NJL model

Effect of 1st-tr on evolution: Savchuk+ 2209.05267

Nishimura, Nara, Steinheimer, Eur.Phys.J.A 60, 2024

Dilepton Yields 50 < M < 100 MeV

Summary

 The beam-energy scan will reveal rich structures on QCD phase diagram, such as the QCD critical point and color superconductivity.

- Quantitative analysis of the size and lifetime of the dense region: $-\sqrt{s_{NN}} \simeq 3$ GeV may be an optimal energy to study $\rho = 3 \sim 4\rho_0$.
- Phase transitions in dense quark matter may be detectable through the enhancement of the dilepton production rate at ultra-lowmass-region.