QCD deconfinement transition up to μ_B =400MeV

Attila Pásztor

ELTE Eötvös Loránd University, Budapest

Based on [2410.06216] (accepted by PRD)

In collaboration with (Wuppertal-Budapest group): Sz. Borsányi, Z. Fodor, J. Guenther, P. Parotto (Torino), L. Pirelli, K. Szabó, C.H. Wong

Zimányi School 2024, Budapest

Outline

1. Review of definitions of the crossover temperature

2. QCD in the grand canonical ensemble

3. The phase diagram for $\mu_B \le 400 \text{MeV} [2410.06216]$

4. Summary (big picture?)

"Chiral symmetry restoration"

Chiral symmetry:

- $SU(N_f)_L \times SU(N_f)_R \to SU(N_f)_V$ for $m_q \to 0$ (chiral limit)
- spontaneously broken at low T (likely 2nd order for N_f=2, unclear for N_f=3)

Chiral condensate: order parameter for chiral symmetry breaking in the two-flavour chiral limit

$$\left\langle \bar{\psi}\psi\right\rangle = \frac{T}{V} \frac{\partial \ln Z}{\partial m_{ud}} \qquad \left\langle \bar{\psi}\psi\right\rangle_{R} = -\left[\left\langle \bar{\psi}\psi\right\rangle_{T} - \left\langle \bar{\psi}\psi\right\rangle_{0}\right] \frac{m_{ud}}{f_{\pi}^{4}}$$

Chiral susceptibility:

$$\chi = \frac{T}{V} \frac{\partial^2 \ln Z}{\partial m_{ud}^2} \qquad \chi_R = \left[\chi_T - \chi_0 \right] \frac{m_{ud}^2}{f_\pi^4}$$

Peak postition: crossover temperature Peak height and/or inverse width: strength of the crossover

"Deconfinement, center symmetry"

Center symmetry:

- discrete Z_3 symmetry for $m_q \rightarrow \infty$ (pure gauge theory)
- spontaneously broken at high T (weak 1st order)

Polyakov-loop:
$$P = \frac{1}{V} \frac{1}{N_c} \sum_{\vec{x}} Tr \prod_{t=0}^{N_t - 1} U_4(\vec{x}, t)$$

An order parameter for the deconfinement transition in pure gauge theory

$$|\langle P \rangle| = e^{-F_Q/T} \Rightarrow |\langle P \rangle| = 0 \leftrightarrow F_Q = \infty$$

Static quark free energy $F_Q = -T \log |\langle P \rangle|$

needs additive renormalization, e.g. $F_Q^R = F_Q(T) - F_Q(T_0)$

Static quark entropy $S_Q = -\frac{\partial F_Q}{\partial T}$ peak position renorm. scheme independent

[Bazavov et al, 1603.06637]:

- peak position of S_O very close to peak position of chiral susceptibility
- smooth, monotonically decreasing function at higher T

Outline

1. Review of definitions of the crossover temperature

2. QCD in the grand canonical ensemble

3. The phase diagram for $\mu_B \le 400 \text{MeV} [2410.06216]$

4. Summary (big picture?)

QCD in the grand canonical ensemble

$$\hat{p} := \frac{p}{T^4} = \frac{1}{(LT)^3} \log \operatorname{Tr} \left(e^{-(H - \mu_B B - \mu_S S - \mu_Q Q)/T} \right) \quad \text{(pressure)}$$

We set $\mu_O = 0$ in what follows.

$$\chi_{ij}^{BS} = \frac{\partial^{i+j} \hat{p}}{\partial \hat{\mu}_{R}^{i} \partial \hat{\mu}_{S}^{j}} \qquad \left(\hat{\mu}_{B/S} \coloneqq \frac{\mu_{B/S}}{T}\right) \quad \text{(susceptibilities)}$$

DERIVATIVES ⇔ FLUCTUATIONS/CORRELATIONS:

$$\chi_1^B \propto \langle B \rangle \propto n_B;$$

 $\chi_2^B \propto \langle B^2 \rangle - \langle B \rangle^2; \quad \chi_{11}^{BS} \propto \langle BS \rangle - \langle B \rangle \langle S \rangle;$
 $\chi_3^B \propto \langle B^3 \rangle - 3\langle B^2 \rangle \langle B \rangle + 2\langle B \rangle^3; \dots$

The QCD path integral

$$Z = \int DA_{\mu}D\overline{\psi}D\psi e^{-S_{YM}-\overline{\psi}M(A_{\mu},m,\mu)\psi} = \int DA_{\mu}\det M(A_{\mu},m,\mu) e^{-S_{YM}}$$

Can be simulated with Monte Carlo if $\det M e^{-S_{YM}}$ is real and positive:

- zero chemical potential $\mu=0$
- purely imaginary chemical potential $Re(\mu) = 0$
- isospin chemical potential $\mu_u = -\mu_d$

Otherwise: complex action/sign problem

⇒ desperate times, desperate measures

C O S T

Lattice QCD at nonzero baryon density

Analytic continuation (ver. 1): Imaginary chemical potential

Calculate $\langle O \rangle$ at ${\rm Im} \mu_B$ ($\mu_B^2 < 0$), extrapolate to $\mu_B^2 > 0$

Analytic continuation (ver. 2): Taylor

TODAY

Calculate $\frac{\partial^n}{\partial \mu_B^n} \langle O \rangle$ at $\mu_B = 0$, extrapolate

Reweighting:

Simulate a different theory, correct the Boltzmann weight in observable

What to do with strangeness?

Sketches of the phase diagram usually have only two axes.

1. Zero strangeness chemical potential (simpler):

$$\mu_S = 0$$

2. Zero strangeness density (more realistic):

Tune
$$\mu_S(T, \mu_B)$$
 such that $\chi_1^S(T) = 0$

If this is done order by order in μ_B , one can write:

$$\mu_{S(T,\mu_B)} = s_1(T)\mu_B + s_3(T)\mu_B^3 + \cdots$$

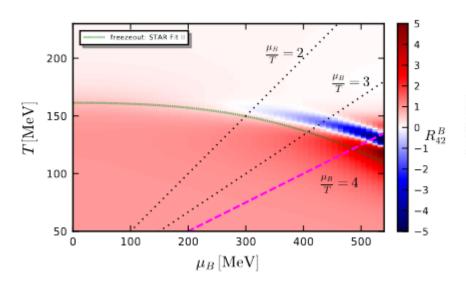
Later, I will compare the phase diagram with these two conditions.

Possible scenarios for $\mu_B > 0$?

[Stephanov, PRL 107 (2011)] Non-monotonic χ_4^B/χ_2^B near critical point

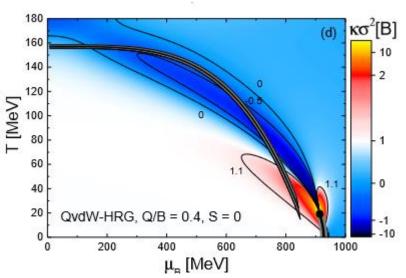
FRG on quark-meson model

(lattice assisted model)
Chiral CEP = (93 MeV, 672 MeV)
[Fu et al, 2101.06035]



Quantum VdW gas

(Non-ideal version of HRG)
Liquid-gas CEP = (19.7 MeV, 922 MeV)
[Vovchenko et al, 1609.03975]



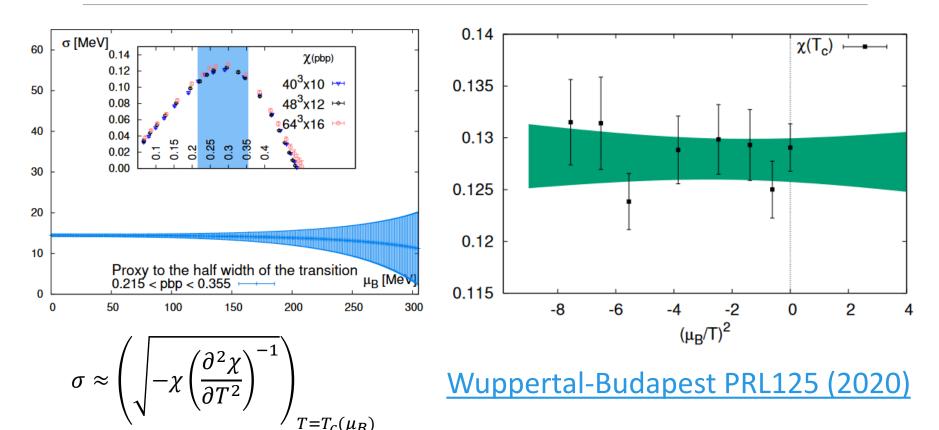
In both models, χ_4^B/χ_2^B is non-monotonic quite far away from the respective CEP.

The two critical points

In the simplest scenario, where we assume that deconfinement and chiral symmetry restoration are also linked at $\mu_B > 0$.

Property	Chiral/deconfinement CEP	Nuclear liquid-gas CEP
Universality class	3D Ising	3D Ising
Baryon fluctations	Diverge at CEP	Diverge az CEP
χ_4^B/χ_2^B	Non-monotonic (potentially far from CEP)	Non-monotonic (potentially far from CEP)
Lee-Yang zeros	Approach real axis at CEP	Approach real axis at CEP
Т	???	O(10-20 MeV)
μ_{B}	???	O(1 GeV)
Chiral symmetry	Restored on one side	Broken on both sides
Confinement	Only on one side	On both sides

Chiral crossover ⇒ approx. constant width and strength



Slope near zero negligible. We need larger chemical potentials.

⇒ Need smaller volume, so the sign problem remains managable.

GOAL: LOOK AT POLYAKOV LOOP AND RELATED OBSERVABLES FOR $\mu_B > 0$

Outline

1. Review of definitions of the crossover temperature

2. QCD in the grand canonical ensemble

3. The phase diagram for $\mu_B \leq 400 \mathrm{MeV}$ [2410.06216]

4. Summary (big picture?)

Lattice setup

- 4HEX action (reduced taste breaking, i.e. better meson spectrum at finite a)
- Exponential definition of μ_B (physical quantization of B at finite a)
- Smeared Polakov loop (reduced noise at finite a, same continuum limit)
- 16³X8 lattice (FINITE BOX AND FINITE LATTICE SPACING)

Sign problem?

- small signal/noise ratio in Taylor coefficients, concentrate most computer time into one volume and spacing
- much weakersign problem in a smaller volume

Cut-off effects? Previous work: WB: [2312.07528]

Baryon fluctuations $(\chi_2^B, \chi_4^B, \chi_6^B, \chi_8^B)$ for N_t =8,10,12 and the continuum were all consistent with each other, so we expect cut-off effects to be small.

Finite volume effects? Previous work: WB: [2410.06216]

At μ_B =0 about 10MeV effect in T_c and a negligible effect on the curvature of the phase diagram in the T- μ_B plane.

Sketch of the full analysis

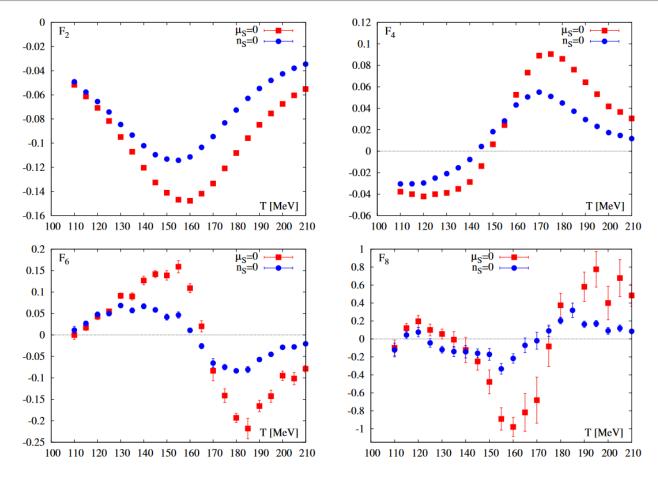
- 1. Calculate the bare free energy $F_Q^{bare}(T, \mu_B)$ with an 8th order Taylor expansion (use computer algebra to generate long formulas (e.g. $\partial^8(|\langle P \rangle|^2)/\partial\mu_u^8$ has 405 terms), evaluate the long formulas on gauge configurations)
- 2. The bare free energy is fitted at every μ_B separately in T, to determine its temperature derivative
- 3. The renormalized $S_Q(T, \mu_B)$ is calculated by subtracting the temperature derivative of the free energy counterterm/renormalization function:

$$S_Q(T, \mu_B) = S_Q^{bare}(T, \mu_B) - S_Q^{c.t.}(T)$$

SYSTEMATIC ERROR SOURCES CONSIDERED:

- 3rd or 4th order polynomial fit to the counterterm
- polynomial fit to counterterm in bare coupling or in temperature
- use T>0 data or the T=0 static potential for determining the counterterm
- (3,2) or (3,3) rational fit for the bare free energy

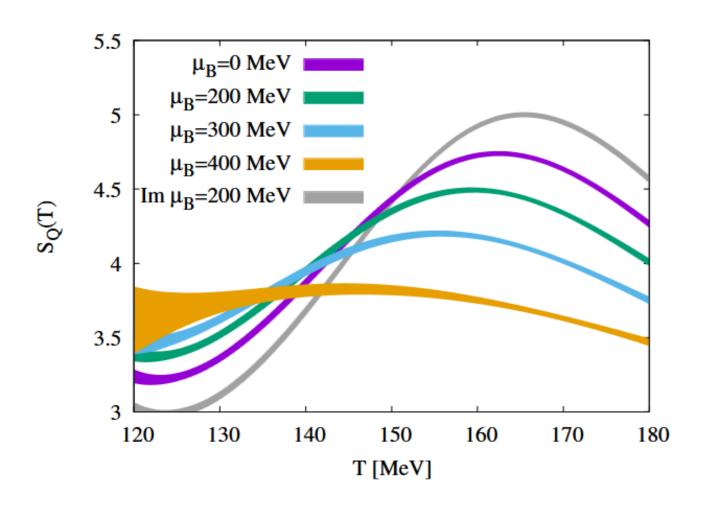
Taylor coefficients of the static quark free energy



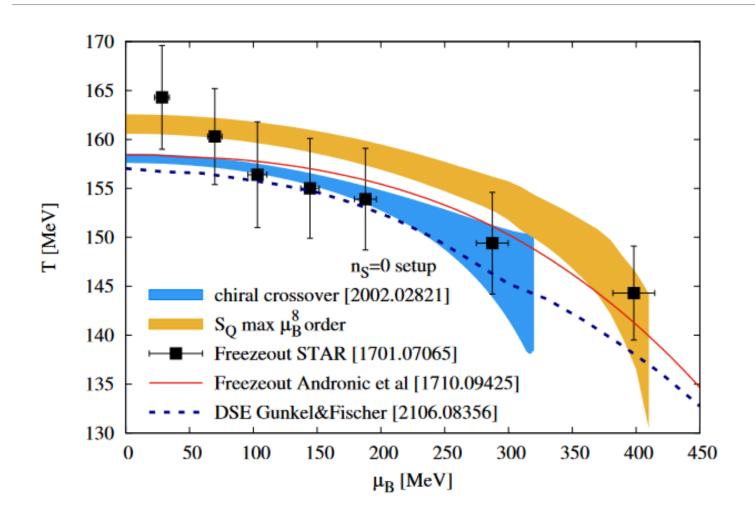
$$F_Q(T, \mu_B) = F_Q(T, 0) + T \sum_{n=2,4} \frac{F_n(T)\hat{\mu}_B^n}{n!}$$

2nd order coeff (μ_s =0) [D'Elia, 1907.09461]

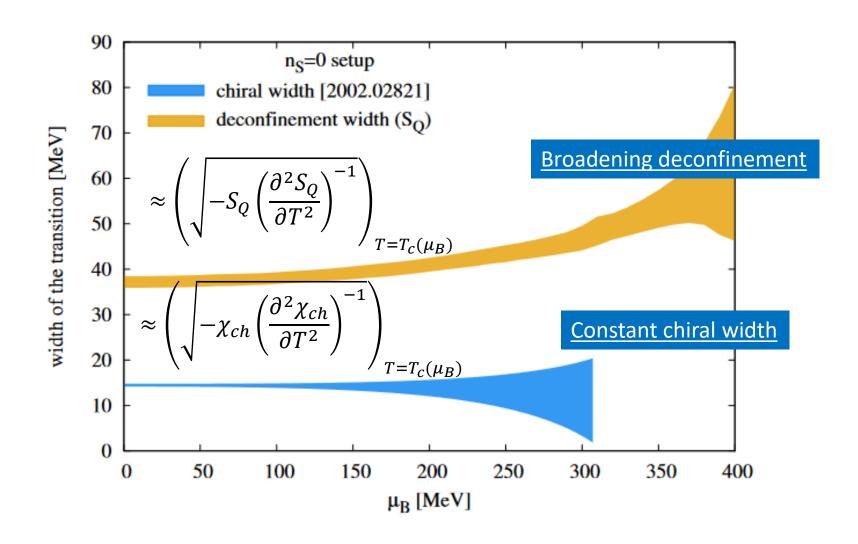
Static quark entropy (n_S=0)



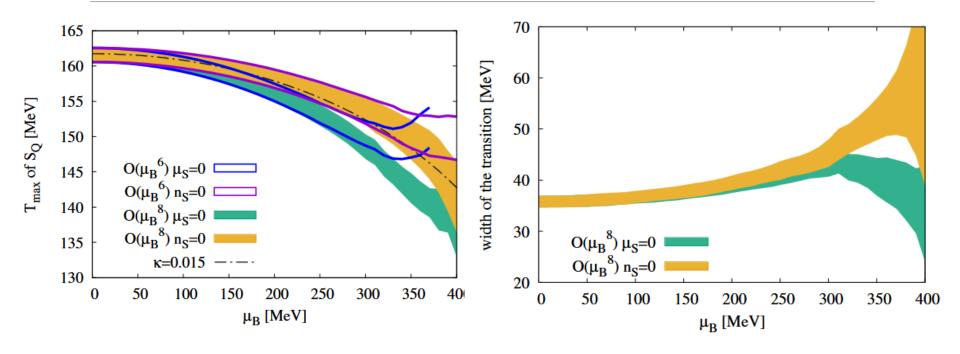
The transition line on the phase diagram ($n_s=0$)



The width of the crossover $(n_s=0)$



Comparing n_s =0 and μ_s =0 and 6th and 8th order



REGION OF RELIABILITY?

The 8th order coefficient is totally negligible for: $T \le 300 \text{ MeV}$ for $n_s = 0$ and $T \le 250 \text{ MeV}$ for $\mu_s = 0$

The 1 sigma errorbars of the 8th and 6th order touch for:

 $T \approx 400 MeV$ for $n_S = 0$ and $T \approx 330 MeV$ for $\mu_S = 0$

Summary

- Calculation of Polyakov loop and related observables at $\mu_B>0$ using an 8th order Taylor expansion
- For $\mu_B \leq 400 \text{MeV}$ the crossover and chemical FO lines stay close
- Deconfinement CEP disfavored below μ_{B} =400MeV
- How strangeness is treated matters (μ_S =0 vs n_S =0):
 - Truncated Taylor expansion breaks down earlier for $\mu_s=0$
 - Hint for deconfinement trend reversing for $\mu_s=0$
 - Existing CEP estimates use $\mu_s=0$

BIG PICTURE: DIFFERENT BEHAVIOR (FOR SMALL μ_B)

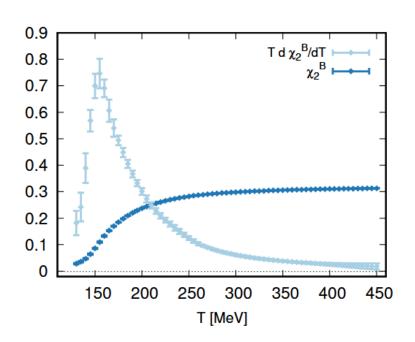
constant (chiral width WB 2020) VS

strengthening (Lee-Yang zero estimates: C. Schmidt Tue) VS

weakening transition (deconfinement width: this work)

BACKUP

"Deconfinement, degrees of freedom"



$$\chi_2^B = \left(\frac{1}{T^3} \frac{\partial^2 p}{\partial \mu_B^2}\right)_{\mu_B = 0}$$

For free massless quarks:

$$\chi_2^B = \frac{N_f}{9}$$

Again, has this has same peak position, after which it approaches the free quark value.

Similarly, the temperature derivative of the entropy has a peak in the same position, etc.

Bottom line: gauge invariant bulk thermodynamic quantities that are appropriately defined (e.g. with a renormalization scheme independent peak) show a transition at roughly the same T. There is just one crossover.

The "hard part"

Log determinant:

$$\log \det M(U, m_j, \mu_j) - \log \det M(U, m_j, 0) = A_j \hat{\mu}_j + \frac{B_j \hat{\mu}_j}{2!} + \cdots$$

The A_i, B_i, ... are evaluated using the reduced matrix formalism

Polyakov loop: $P = P_R + P_I$

Chain rule: $\partial_i \langle X \rangle = \langle \partial_i X \rangle + \langle A_i X \rangle - \langle A_i \rangle \langle X \rangle$

This has to be applied repeatedly to generate the terms.

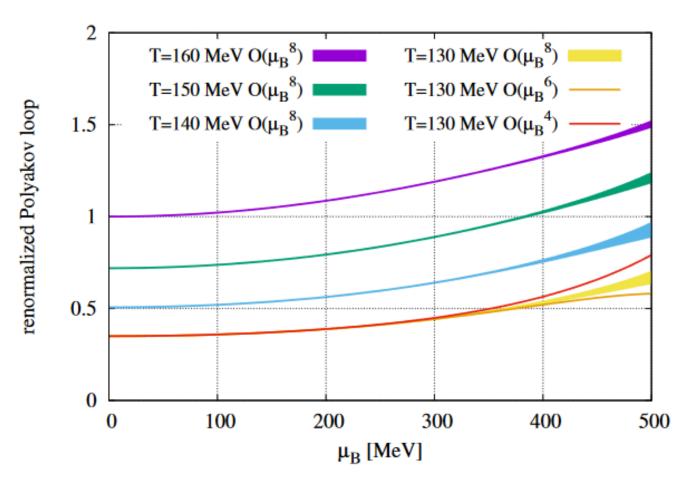
$$\begin{split} \partial_u^2 Q &= +2 \langle P_R \rangle \langle B_u P_R \rangle + 2 \langle P_R \rangle \langle A_u A_u P_R \rangle - 2 \langle A_u P_I \rangle \langle A_u P_I \rangle - 2 \langle B_u \rangle \langle P_R \rangle \langle P_R \rangle - 2 \langle A_u A_u \rangle \langle P_R \rangle \langle P_R \rangle \\ \partial_u^4 Q &= +2 \langle P_R \rangle \langle D_u P_R \rangle + 6 \langle P_R \rangle \langle B_u B_u P_R \rangle + 8 \langle P_R \rangle \langle A_u C_u P_R \rangle + 12 \langle P_R \rangle \langle A_u A_u B_u P_R \rangle + 2 \langle P_R \rangle \langle A_u A_u A_u A_u P_R \rangle \\ &+ 6 \langle B_u P_R \rangle \langle B_u P_R \rangle - 8 \langle A_u P_I \rangle \langle C_u P_I \rangle - 24 \langle A_u P_I \rangle \langle A_u B_u P_I \rangle - 8 \langle A_u P_I \rangle \langle A_u A_u A_u P_I \rangle + 12 \langle A_u A_u P_R \rangle \langle B_u P_R \rangle \\ &+ 6 \langle A_u A_u P_R \rangle \langle A_u A_u P_R \rangle - 2 \langle D_u \rangle \langle P_R \rangle \langle P_R \rangle - 24 \langle B_u \rangle \langle P_R \rangle \langle B_u P_R \rangle - 24 \langle B_u \rangle \langle P_R \rangle \langle A_u A_u P_R \rangle \\ &+ 24 \langle B_u \rangle \langle A_u P_I \rangle \langle A_u P_I \rangle - 6 \langle B_u B_u \rangle \langle P_R \rangle \langle P_R \rangle - 8 \langle A_u C_u \rangle \langle P_R \rangle \langle P_R \rangle - 24 \langle A_u A_u \rangle \langle P_R \rangle \langle B_u P_R \rangle \\ &- 24 \langle A_u A_u \rangle \langle P_R \rangle \langle A_u A_u P_R \rangle + 24 \langle A_u A_u \rangle \langle A_u P_I \rangle \langle A_u P_I \rangle - 12 \langle A_u A_u B_u \rangle \langle P_R \rangle \langle P_R \rangle - 2 \langle A_u A_u A_u A_u \rangle \langle P_R \rangle \langle P_R \rangle \\ &+ 18 \langle B_u \rangle \langle B_u \rangle \langle P_R \rangle \langle P_R \rangle + 36 \langle A_u A_u \rangle \langle P_R \rangle \langle P_R \rangle + 18 \langle A_u A_u \rangle \langle A_u A_u \rangle \langle P_R \rangle \langle P_R \rangle \end{aligned}$$

8th order: 405 terms

+ strangeness neutrality

The renormalized Polyakov loop $(n_S=0)$

Wuppertal-Budapest, 2410.06216, 4HEX 16³X8



The renormalized Polyakov loop $(n_s=0)$

