Existence theorem on the UV limit of Euclidean Wilsonian RG flows

Class.Quant.Grav.41(2024)125009 and manuscript in prep.

András LÁSZLÓ

laszlo.andras@wigner.hun-ren.hu
HUN-REN Wigner RCP, Budapest

joint work with Zsigmond Tarcsay

Zimányi Winter School, 6 December 2024

Outline

Mathematics of Euclidean Feynman functional integral.

Mathematics of Wilsonian regularization.

Mathematics of Wilsonian renormalization.

Recap on distribution theory

Will consider only scalar and bosonic fields for simplicity.

Will consider only flat (affine) spacetime manifold for simplicity.

- Solution of "open" sets
 Solution of "open" sets
 They form a vector space with a topology: $\varphi_i \in \mathcal{E} \ (i \in \mathbb{N}_0) \rightarrow 0$ iff all derivatives locally uniformly converge to zero.
- S : space of rapidly decreasing smooth fields (Schwartz fields) over spacetime. They form a vector space with a topology:
 φ_i ∈ S (i ∈ N₀) → 0 iff all derivatives uniformly converge to zero faster than polynomial.
- D : space of compactly supported smooth fields (test fields) over spacetime. They form a vector space with a topology:

 $\varphi_i \in \mathcal{D}$ $(i \in \mathbb{N}_0) \to 0$ iff they stay within a compact set and $\to 0$ in \mathcal{E} sense.

Distributions are continuous duals of \mathcal{E} , \mathcal{S} , \mathcal{D} .

- \mathcal{E}' : continuous $\mathcal{E} \to \mathbb{R}$ linear functionals.
 They are the compactly supported distributions.
- S' : continuous $S \to \mathbb{R}$ linear functionals.
 They are the tempered or Schwartz distributions.
- \mathcal{D}' : continuous $\mathcal{D} \to \mathbb{R}$ linear functionals.
 They are the space of all distributions.

They carry a corresponding natural topology (notion of "open" sets).

Recap on measure / integration / probability theory

Let X be a set (their elements called elementary events).

- Let Σ be a collection of subsets of X such that:
 - $I X is in \Sigma,$
 - for all A in Σ , their complement is in Σ .
 - for all countably infinite system $A_i \in \Sigma$ ($i \in \mathbb{N}_0$), their union $\bigcup_{i \in \mathbb{N}_0} A_i$ is in Σ.

Then, Σ is called a sigma-algebra (their elements called composite events). Typically, if X carries open sets (topology), the sigma-alg generated by them is used.

• Let
$$\mu: \Sigma \to \mathbb{R}_0^+$$
 be a set-function, such that:

•
$$\mu(\emptyset) = 0$$
,

for all countably infinite disjoint system $A_i ∈ Σ$ ($i ∈ ℕ_0$): $μ(∪_{i∈ℕ_0} A_i) = \sum_{i∈ℕ_0} μ(A_i)$,

■ ∃ some countably infinite system $A_i \in \Sigma$ ($i \in \mathbb{N}_0$) with $\mu(A_i) < \infty$: $X = \bigcup_{i \in \mathbb{N}_0} A_i$. Then, μ is called a measure.

 (X, Σ, μ) is called a measure space. [E.g. probability measure space if $\mu(X) =$ finite.] Will study probability measures on $X = \mathcal{E}, \mathcal{S}, \mathcal{D}, \mathcal{E}', \mathcal{S}', \mathcal{D}'$.

- A function $f: X \to \mathbb{C}$ is called measurable iff in good terms with mesure theory. Theorem: f is measurable iff approximable pointwise by "histograms" with bins from Σ .
- The integral $\int_{\phi \in X} f(\phi) d\mu(\phi)$ is defined via the histogram "area" approximations.
 Theorem: this is well-defined.
- Let (X, Σ, μ) be a measure space and (Y, Δ) an other one, with unspecified measure. Let C : X → Y be a measurable mapping. Then, one can define the pushforward (or marginal) measure C_{*} μ on Y.
 [For all B ∈ Δ one defines (C_{*}μ)(B) := μ(C(B)).]
- Pushforward (marginal) measure means simply transformation of integration variable. If forgetful transformation, the "forgotten" d.o.f. are "integrated out".

If
$$\mu$$
 is a probability measure, $Z(j) := \int_{\phi \in X} e^{i(j|\phi)} d\mu(\phi)$ is its Fourier transform.

Mathematics of Euclidean Feynman functional integral

- Take an Euclidean action S = T + V, with kinetic + potential term splitting. Say, $T(\varphi) = \int \varphi (-\Delta + m^2) \varphi$, and $V(\varphi) = g \int \varphi^4$.
- **P** Then T, i.e. $(-\Delta + m^2)$ has a propagator $K(\cdot, \cdot)$ which is positive definite:

- for all $j \in S$ sources: $(K|j \otimes j) \ge 0$.
- **Due** to above, the function $Z_T(j) := e^{-(K|j \otimes j)}$ $(j \in S)$ has "quite nice" properties.
- Bochner-Minlos theorem: because of
 - "quite nice" properties of Z_T ,
 - "quite nice" properties of the space S,
 - $\exists | \text{ probability measure } \gamma_T \text{ on } \mathcal{S}', \text{ whose Fourier transform is } Z_T.$ It is the Feynman measure for free theory: $\int_{\phi \in \mathcal{S}'} (\dots) \, \mathrm{d}\gamma_T(\phi) = \int_{\phi \in \mathcal{S}'} (\dots) \, \mathrm{e}^{-T(\phi)} \, \text{``d}\phi \text{''}.$
 - Tempting definition for Feynman measure of interacting theory:

$$\int_{\phi \in \mathcal{S}'} (\dots) e^{-V(\phi)} d\gamma_T(\phi) \qquad \left[= \int_{\phi \in \mathcal{S}'} (\dots) \underbrace{e^{-(T(\phi) + V(\phi))}}_{=e^{-S(\phi)}} \text{ "d}\phi \right]$$

Existence theorem on the UV limit of Euclidean Wilsonian RG flows - p. 7/15

Mathematics of Wilsonian regularization

Because V is spacetime integral of pointwise product of fields, e.g. $V(\varphi) = g \int \varphi^4$. How to bring e^{-V} and γ_T to common grounds?

Physicist solution: in desperation, Wilsonian regularization.
Take a continuous linear mapping C: (distributional fields) \rightarrow (function sense fields).
Take the pushforward Gaussian measure $C_* \gamma_T$, which lives on $\operatorname{Ran}(C)$.
Those are functions, so safe to integrate e^{-V} there:

$$\int_{\varphi \in \operatorname{Ran}(C)} (\dots) e^{-V(\varphi)} d(C_* \gamma_T)(\varphi) \qquad \left[= \int_{\varphi \in \operatorname{Ran}(C)} (\dots) e^{-(T_C(\varphi) + V(\varphi))} \, \text{``d}\varphi'' \right]$$

a space of UV regularized fields

[Schwartz kernel theorem: C is convolution by a test function, if translationally invariant. I.e., it is a momentum space damping, or coarse-graining of fields.]

Mathematics of Wilsonian renormalization

Issue, the so defined $e^{-V} \cdot C_* \gamma_T$ is C-dependent. How to get rid of C-dependence?

Take a family V_C ($C \in \{\text{coarse-grainings}\}$) of interaction terms. $\leftrightarrow \mu_C := e^{-V_C} \cdot C_* \gamma_T$ We say that it is a Wilsonian renormalization group (RG) flow iff: \exists some continuous functional $z : \{\text{coarse-grainings}\} \rightarrow \mathbb{R}$, such that \forall coarse-grainings C, C', C'' with C'' = C'C: $z(C'')_* \mu_{C''} = z(C)_* C'_* \mu_C$.

[z is called the running wave function renormalization factor.]

Physics idea behind: expectation value of a smoothed observable can be calculated at least C-consistently.

Expressed on moments: let G_C = (G_C⁽⁰⁾, G_C⁽¹⁾, G_C⁽²⁾,...) be the moments of μ_C, then ∃ some continuous functional z : {coarse-grainings} → ℝ, such that ∀ coarse-grainings C, C', C'' with C'' = C' C: z(C'')ⁿ G_{C''}⁽ⁿ⁾ = z(C)ⁿ ⊗ⁿC' G_C⁽ⁿ⁾ for all n = 0, 1, 2, ...
 [Valid also in Lorentz signature and on manifolds, for formal moments (correlators).]

[We can always set z(C) = 1, by rescaling fields: $\tilde{\mu}_C := z(C)_* \ \mu_C$ or $\tilde{\mathcal{G}}_C^{(n)} := z(C)^n \ \mathcal{G}_C^{(n)}$.]

For bosonic fields over flat spacetime, we have some theorems. [A.László, Z.Tarcsay, *Class.Quant.Grav.***41**(2024)125009 + *new manuscript in prep.*]

Existence of UV limit of correlators (any signature): $\exists | C$ -independent distributional correlator $G = (G^{(0)}, G^{(1)}, G^{(2)}, ...)$, such that $\mathcal{G}_C^{(n)} = \otimes^n C G^{(n)}$ holds.

Existence of UV limit of Feynman measure (Euclidean signature): $\exists | C$ -independent probability measure μ on the distribution sense fields, such that $\mu_C = C_* \mu$ holds.

Existence of UV limit of interaction potential (Euclidean signature): $\exists | C$ -independent interaction potential V on the distribution sense fields ϕ , such that $V_C(C \phi) = V(\phi)$ holds γ_T -a.e., for positive Fourier spectrum coarse-grainings C.

- Preservation of lower bound (Euclidean signature):
 if V_C were bounded from below for a positive Fourier spectrum C, then
 V and all V_C are bounded from below, and with the same bound.
 - \rightarrow This leads to a new kind of renormalizability test.

Summary

Under mild conditions:

- Wilsonian RG flow of correlators have a UV limit. (any signature)
- Wilsonian RG flow of Feynman measures have UV limit. (Euclidean signature)
- Wilsonian RG flow of interaction potentials have UV limit. (Euclidean signature)
- The flow preserves lower bound of interaction potentials. (Euclidean signature)
 - \rightarrow Can be used for a renormalizability test.

Backup slides

Relation to usual RG theory:

Fix some $\eta \in S$ such that $\int \eta = 1$ and $F(\eta) > 0$. Introduce scaled η , that is $\eta_{\Lambda}(x) := \Lambda^N \eta(\Lambda x)$ (for all $x \in \mathbb{R}^N$ and scaling $1 \le \Lambda < \infty$). One has $\eta_{\Lambda} \xrightarrow{S'} \delta$ as $\Lambda \longrightarrow \infty$.

By our theorem, for all Λ , one has $V_{C_{\eta_{\Lambda}}}(C_{\eta_{\Lambda}}\phi) = V(\phi)$ for γ_{T} -a.e. $\phi \in \mathcal{S}'$. \Downarrow Informally: ODE for $V_{C_{\eta_{\Lambda}}}$, namely $\frac{\mathrm{d}}{\mathrm{d}\Lambda} V_{C_{\eta_{\Lambda}}}(C_{\eta_{\Lambda}}\phi) = 0$ for $1 \leq \Lambda < \infty$.

QFT people try to solve such flow equation, given initial data $V_{C_{\Lambda}}|_{\Lambda=1}$.

But why bother? By our theorem, all RG flows of such kind has some V at the UV end. Look directly for V?

What really the game is about?

Original problem:

- We had \mathcal{V} : {function sense fields} $\rightarrow \mathbb{R} \cup \{\pm \infty\}$, say $\mathcal{V}(\varphi) = g \int \varphi^4$.
- We would need to integrate it against γ_T , but that lives on \mathcal{S}' fields.
- $\gamma_T\,$ known to be supported "sparsely", i.e. not on function fields, but really on $\mathcal{S}'.$
- So, we really need to extend \mathcal{V} at least γ_T -a.e. to make sense of $\mu := e^{-V} \gamma_T$.

Concern of physicists: this may be impossible.

- We are a fraid that V on \mathbf{S}' might not exist.
- Instead, let us push γ_T to smooth fields by C, do there $\mu_C := e^{-V_C} C_* \gamma_T$.
- Then, get rid of *C*-dependence of μ_C by concept of Wilsonian RG flow. Maybe even $\mu_C \to \mu$ could exist as $C \to \delta$ if we are lucky...

Our result: we are back to the start.

- The UV limit Feynman measure μ then indeed exists.
- But we just proved that then there must exist some extension V of V to S', γ_T -a.e.
- So, we'd better look for that ominous extension V.
- For bounded from below \mathcal{V} , bounded from below measurable V needed. If we find one, $\mu := e^{-V} \gamma_T$ is then finite measure automatically. Only pathology: overlap integral of e^{-V} and γ_T expected small, maybe zero. We only need to make sure that $\int_{\phi \in \mathcal{S}'} e^{-V(\phi)} d\gamma_T(\phi) > 0$!

We had \mathcal{V} : {function sense fields} $\rightarrow \mathbb{R} \cup \{\pm \infty\}$, say $\mathcal{V}(\varphi) = g \int \varphi^4$. We need an extension V on the distribution sense fields with the same lower bound. If V bounded from below, only possible pathology: $\mu := e^{-V} \cdot \gamma_T = 0$. There is an optimal extension, the "greedy" extension. $V(\cdot) := (\gamma_{-}) \inf \lim \inf \mathcal{V}(n, \star, \cdot)$

$$V(\cdot) := (\gamma_T) \inf_{\{\eta_n \to \delta\}} \liminf_{n \to \infty} \mathcal{V}(\eta_n \star \cdot)$$

This is the lower bound of extensions, i.e. overlap of e^{-V} and γ_T largest. But is *V* measurable at all? Not evident.

Theorem[A.László, Z.Tarcsay manuscript in prep.]:

1. The "greedy extension" is measurable.

2. The interacting Feynman measure $\mu := e^{-V} \cdot \gamma_T$ by greedy extension is nonzero iff

$$\exists \eta_n \to \delta : \int_{\phi \in \mathcal{S}'} \limsup_{n \to \infty} e^{-\mathcal{V}(\eta_n \star \phi)} d\gamma_T(\phi) > 0$$

E.g. a sufficient condition:

$$\exists \eta_n \to \delta : \qquad \lim_{n \to \infty} \int_{\phi \in \mathcal{S}'} e^{-\mathcal{V}(\eta_n \star \phi)} \, \mathrm{d}\gamma_T(\phi) > 0.$$

Existence theorem on the UV limit of Euclidean Wilsonian RG flows – p. 15/15