

TRANSPORT PROPERTIES OF THE STRONGLY INTERACTING QUARK-GLUON PLASMA

Ilia Grishmanovskii

in collaboration with

Taesoo Song, Olga Soloveva, Carsten Greiner, and Elena Bratkovskaya

MOTIVATION

- QGP appears to be a strongly interacting system of partons → pQCD methods are not applicable for the thermal QGP → one should rely on non-perturbative methods
- Effective quasiparticles models describe the partonic degrees of freedom and their interactions, making it possible to dynamically investigate
 - the evolution (thermalization) of the QGP
 - strangeness production
 - jet/charm attenuation
 - etc.

DYNAMICAL QUASIPARTICLE MODEL (DQPM)

DQPM INGREDIENTS

- DQPM effective model for the description of **non-perturbative** QCD based on **lattice QCD EoS**
- The QGP phase is described in terms of strongly interacting off-shell quasiparticles massive quarks and gluons with Lorentzian spectral functions:

$$ho_j(\omega,{f p})=rac{4\omega\gamma_j}{\left(\omega^2-{f p}^2-M_j^2
ight)^2+4\gamma_j^2\omega^2}$$

 Theoretical basis: "resummed" single-particle Green's functions → quark/gluon propagators with complex self-energies

$$\Delta_i(\omega, \mathbf{p}) = \frac{1}{\omega^2 - \mathbf{p}^2 - \Pi_i}, \quad \Pi_i = m_i^2 - 2i\gamma_i\omega$$

- Real part of the self-energy → thermal mass
- Imaginary part of the self-energy \rightarrow interaction width

DQPM INGREDIENTS

Masses and widths of quasiparticles depend on T and μ_R

 \rightarrow DQPM allows to explore QCD in the non-perturbative regime of the (T, $\mu_{\rm B}$) phase diagram

Strong coupling (g) is defined from IQCD entropy density

PARTONIC INTERACTIONS

PARTONIC ELASTIC INTERACTIONS

• DQPM partonic interactions are described in terms of elastic $(2\rightarrow 2)$ and inelastic $(2\rightarrow 3)$ scatterings

- No approximations applied
- All interference terms included
- Reproduces the pQCD propagators for zero masses and widths

quark + gluon

 ϵ_1

gluon + gluon

quark + quark

Transport properties of sQGP

Zimányi School 2024

u - channel

PARTONIC INELASTIC INTERACTIONS

DQPM ELASTIC DIFFERENTIAL CROSS SECTIONS

- → DQPM angular distributions are more "isotropic"
- → DQPM reproduces pQCD cross sections for zero masses and widths (pQCD limit)
- → The off-shell effects are small for energetic partons and for high temperatures

PARTONIC CROSS SECTIONS: ELASTIC VS INELASTIC

I. Grishmanovskii et al., PRC 109, 024911 (2024)

- → Elastic cross sections dominate at low energies and high temperatures
- → Inelastic cross sections dominate at high energies and low temperatures
- → Temperature dependence is stronger for the inelastic reactions and is mainly driven by the DQPM strong coupling

 $\frac{|\overline{\mathcal{M}}_{2\to 2}|^2 \propto \alpha_s^2}{|\overline{\mathcal{M}}_{2\to 3}|^2 \propto \alpha_s^3}$

PARTONIC INTERACTION RATE

- Interaction rate (Γ) describes the frequency at which partons interact with each other within a medium
- Relaxation time ($\tau \sim 1/\Gamma$) defines the time it takes for a system to return to equilibrium after a change or disturbance

I. Grishmanovskii et al., PRC 109, 024911 (2024)

- → The partonic interaction rates and relaxation time are primarily governed by elastic scattering
- → Inelastic processes with massive gluon emission are suppressed in the thermalized QCD medium

JET TRANSPORT COEFFICIENTS

- Transport coefficients are material properties that characterize the response of a system to external forces
- q-hat (ĝ) defines the transverse momentum transfer squared per unit length: $\hat{q}=\langle q_{\perp}^2/\lambda
 angle$
- Energy loss (dE/dx) quantifies the rate at which a high-energy parton loses its energy while propagating

Agreement with the other models at low jet energy

→ Rapid rise with decreasing medium temperature

I. Grishmanovskii et al., PRC 109, 024911

q̂ AND dE/dx FROM ELASTIC REACTIONS

I. Grishmanovskii et al., PRC 106, 014903 (2022)

- → Logarithmic growth of q-hat and dE/dx with jet energy
- → DQPM predicts stronger suppression
- → Aligning with pQCD-based calculations in the pQCD-limit

I. Grishmanovskii et al., PRC 110, 014908 (2024)

- → Temperature and momentum dependence is stronger for inelastic reactions
- → Stronger energy loss at large energies and small temperatures
 - \rightarrow questionable suppression of jets in heavy-ion collisions

DIFFERENT "SCENARIOS" FOR STRONG COUPLING

• Jet is not a part of the QGP medium \rightarrow strong coupling is not thermal

 \rightarrow consider different strong couplings in *thermal* (\bigcirc), *jet* (\bigcirc), and *radiative* (\bigcirc) vertices

 p_3

 p_a

I. Grishmanovskii et al., PRC 110, 014908 (2024)

lia Grishmanovskii Iransport properties of sUGP Zimanyi School 2024	1

q FOR DIFFERENT "SCENARIOS"

- → High sensitivity to the choice of the strong couplings
- → The "default" DQPM with the thermal couplings produces the highest values of the transport coefficients

I. Grishmanovskii et al., PRC 110, 014908 (2024)

Ilia Grishmanovskii	Transport properties of sQGP	Zimányi School 2024	17
---------------------	------------------------------	---------------------	----

RELATION BETWEEN η /s AND \hat{q}

- Shear viscosity η describes resistance to sheared flow
- Both q̂ and η serve as a measure of the parton coupling strength within the medium
- In the weakly coupled limit: $\eta/s \approx 1.25 \frac{T^3}{\hat{a}}$

- → Sensitive to the choice of the strong coupling
- → Valid in the weak coupling regime (at high temperatures)
- → Violated in the strong coupling regime (at low temperatures)

B. Müller, PRD 104, L071501 (2021) I. Grishmanovskii et al., PRC 110, 014908 (2024)

Ilia Grishmanovskii Transport properties of sQGP	Zimányi School 2024	18
--	---------------------	----

CHARM DIFFUSION COEFFICIENT

• Diffusion coefficient: $D_s = \lim_{p_c \to 0} \frac{T}{(\mathcal{A}/p)M_c}$

→ Inelastic contribution to the diffusion coefficient is negligible

SUMMARY

- DQPM provides a self-consistent approach to study partonic interactions and transport properties of the QGP
- Inelastic interactions are suppressed in a thermalized QGP medium, but are crucial in the context of jet attenuation
- Jet energy loss of hard jet partons is larger within the DQPM compared to the pQCD-based calculations
- Transport coefficients are highly sensitive to the choice of the strong coupling