

TRANSPORT PROPERTIES OF THE STRONGLY INTERACTING QUARK-GLUON PLASMA

Ilia Grishmanovskii

in collaboration with

Taesoo Song, Olga Soloveva, Carsten Greiner, and Elena Bratkovskaya

MOTIVATION

- \bullet QGP appears to be a strongly interacting system of partons \rightarrow pQCD methods are not applicable for the thermal QGP \rightarrow one should rely on non-perturbative methods
- Effective quasiparticles models describe the partonic degrees of freedom and their interactions, making it possible to dynamically investigate
	- \circ the evolution (thermalization) of the QGP
	- strangeness production
	- jet/charm attenuation
	- etc.

DYNAMICAL QUASIPARTICLE MODEL (DQPM)

DQPM INGREDIENTS

- DQPM effective model for the description of non-perturbative QCD based on lattice QCD EoS
- The QGP phase is described in terms of strongly interacting off-shell quasiparticles massive quarks and gluons with Lorentzian spectral functions:

$$
\rho_j(\omega,{\bf p})=\frac{4\omega\gamma_j}{\left(\omega^2-{\bf p}^2-M_j^2\right)^2+4\gamma_j^2\omega^2}
$$

Theoretical basis: "resummed" single-particle Green's functions \rightarrow quark/gluon propagators with complex self-energies

$$
\Delta_i(\omega,\mathbf{p}) = \frac{1}{\omega^2 - \mathbf{p}^2 - \Pi_i}, \quad \Pi_i = m_i^2 - 2i\gamma_i\omega
$$

- Real part of the self-energy \rightarrow thermal mass
- Imaginary part of the self-energy \rightarrow interaction width

DQPM INGREDIENTS

Masses and widths of quasiparticles depend on T and $\mu_{\rm B}$ \rightarrow Strong coupling (g) is defined from IQCD entropy density at $\mu_{\sf B}^{}$ =0 $g^2(s/s_{SB}) = d((s/s_{SB})^e - 1)^f$

0.35

 $IQCD: N_f = 0$

 $LOCD: N_f = 2$

IQCD: $N_f = 2 + 1$

 \rightarrow DQPM allows to explore QCD in the non-perturbative regime of the (T, $\mu_{\rm B}$) phase diagram

 $\mathbf{3}$

PARTONIC INTERACTIONS

PARTONIC ELASTIC INTERACTIONS

DQPM partonic interactions are described in terms of elastic (2→2) and inelastic (2→3) scatterings

- No approximations applied
- All interference terms included
- Reproduces the pQCD propagators for zero masses and widths

quark + quark

quark + gluon discussed by the control of the gluon + gluon +

 s – channel

Ilia Grishmanovskii National Transport properties of sQGP National National Material Contract 2024

 u – channel

 s – channel

PARTONIC INELASTIC INTERACTIONS

DQPM ELASTIC DIFFERENTIAL CROSS SECTIONS

- → DQPM angular distributions are more "isotropic"
- → DQPM reproduces pQCD cross sections for zero masses and widths (pQCD limit)
- → The off-shell effects are small for energetic partons and for high temperatures

PARTONIC CROSS SECTIONS: ELASTIC VS INELASTIC

I. Grishmanovskii et al., PRC 109, 024911 (2024)

- **→** Elastic cross sections dominate at low energies and high temperatures
- **→** Inelastic cross sections dominate at high energies and low temperatures
- → Temperature dependence is stronger for the inelastic reactions and is mainly driven by the DQPM strong coupling

 $\frac{|\overline{\mathcal{M}}_{2\rightarrow 2}|^2 \propto \alpha_s^2}{|\overline{\mathcal{M}}_{2\rightarrow 3}|^2 \propto \alpha_s^3}$

PARTONIC INTERACTION RATE

- Interaction rate (Γ) describes the frequency at which partons interact with each other within a medium
- Relaxation time ($\tau \sim 1/\Gamma$) defines the time it takes for a system to return to equilibrium after a change or disturbance

I. Grishmanovskii et al., PRC 109, 024911 (2024)

- → The partonic interaction rates and relaxation time are primarily governed by elastic scattering
- \rightarrow Inelastic processes with massive gluon emission are suppressed in the thermalized QCD medium

JET TRANSPORT COEFFICIENTS

q̂ FROM ELASTIC REACTIONS

- Transport coefficients are **material properties** that characterize the response of a system to external forces
- **q-hat** (q̂) defines the transverse momentum transfer squared per unit length: $\hat{q}=\langle q_\perp^2/\lambda\rangle$
- Energy loss (dE/dx) quantifies the rate at which a high-energy parton loses its energy while propagating

 \rightarrow Agreement with the other models at low jet energy

 \rightarrow Rapid rise with decreasing medium temperature

I. Grishmanovskii et al., PRC 109, 024911

q̂ AND dE/dx FROM ELASTIC REACTIONS

I. Grishmanovskii et al., PRC 106, 014903 (2022)

- \rightarrow Logarithmic growth of q-hat and dE/dx with jet energy
- **→** DQPM predicts stronger suppression
- \rightarrow Aligning with pQCD-based calculations in the pQCD-limit

q̂ FROM ELASTIC AND INELASTIC REACTIONS

I. Grishmanovskii et al., PRC 110, 014908 (2024)

- **→** Temperature and momentum dependence is stronger for inelastic reactions
- ➔ Stronger energy loss at large energies and small temperatures
	- \rightarrow questionable suppression of jets in heavy-ion collisions

DIFFERENT ''SCENARIOS'' FOR STRONG COUPLING

I. Grishmanovskii et al., PRC 110, 014908 (2024)

16

q̂ FOR DIFFERENT ''SCENARIOS''

- **→** High sensitivity to the choice of the strong couplings
- \rightarrow The "default" DQPM with the thermal couplings produces the highest values of the transport coefficients

I. Grishmanovskii et al., PRC 110, 014908 (2024)

RELATION BETWEEN η/s AND q̂

- Shear viscosity η describes resistance to sheared flow
- Both \hat{q} and η serve as a measure of the parton coupling strength within the medium
- In the weakly coupled limit: $\eta/s \approx 1.25 \frac{T^3}{\hat{q}}$

- \rightarrow Sensitive to the choice of the strong coupling
- \rightarrow Valid in the weak coupling regime (at high temperatures)
- ➔ Violated in the strong coupling regime (at low temperatures)

B. Müller, PRD 104, L071501 (2021) I. Grishmanovskii et al., PRC 110, 014908 (2024)

CHARM DIFFUSION COEFFICIENT

Diffusion coefficient: $D_s = \lim_{p_c \to 0} \frac{T}{(\mathcal{A}/p)M_c}$

 \rightarrow Inelastic contribution to the diffusion coefficient is negligible

SUMMARY

- DQPM provides a self-consistent approach to study partonic interactions and transport properties of the QGP
- Inelastic interactions are suppressed in a thermalized QGP medium, but are crucial in the context of jet attenuation
- Jet energy loss of hard jet partons is larger within the DQPM compared to the pQCD-based calculations
- Transport coefficients are highly sensitive to the choice of the strong coupling