Study of proton reconstruction using the TOTEM Roman pot detectors during the high- β^* data taking period

Ferenc Siklér

Wigner Research Centre for Physics, Budapest for the CMS and TOTEM Collaborations

Zimányi Winter School December 6, 2024

Central exclusive production – data

 $p(p_2)$

 $p(p_b)$

h⁺h⁻, mostly $\pi^+\pi^-$ or K⁺K⁻, but some pp

 \mathbb{PP} collider \rightarrow gluon-rich initial state Competition with ALICE, ATLAS, and LHCb

Physics analysis – from last year

• Analysis

- double pomeron exchange, charged hadron pairs, 13 TeV
- now the $\pi^+\pi^-$ final state, resonance-free region
- differential cross sections in bins of $(p_{1,T}, p_{2,T})$
- azimuthal angle ϕ between the surviving protons

• Results

- rich structure of nonperturbative interactions
- parabolic minimum in the distribution of ϕ (first)
- interference of the bare and the rescattered amplitudes
- model tuning: pomeron-related quantities (first)
- good quality fits, choices of form factors tested

Published: Phys Rev D 109 (2024) 112013

Now: technical details (arXiv:2411.19749), submitted to J Inst

Scattered protons – roman pots

• Details

- two arms (in sectors 45 and 56)
- near and far stations
 - (at \approx 213 and 220 m)
- top and bottom pots
- within a pot:
 - 5 planes in 'u' and
 - 5 planes in 'v' directions
 - (usually at $\pm 45^{\circ}$, or $37 \text{ vs} 53^{\circ}$)
- each plane has: 4 \times 128 strips
- Two pots per arm
 - \rightarrow two measurements
 - \rightarrow location and momentum at IP

Roman pots (not to scale!)

Roman pots – close look at events (not to scale!)

Normal

Normal with secondary (1% within a station)

Roman pots – fraction of two-strip clusters

About 10.5% of the clusters are two-strip, precious position information

Roman pots – protons

Track model: $u_i = az_i + b + \delta_i$ – how to optimally use/extract information? We have "digital" hit information (strip number) vs usual normally-distributed uncertainties Expected location on the *i*th plane: measured u_i , slope a, intercept b, shift δ_i

Roman pots – fitting tracklets (5 planes)

CMS-TOTEM

Roman pots – fitting tracklets (5 planes)

$$y_i^{\mathsf{clus}} - az_i - \delta_i - w < b < y_i^{\mathsf{clus}} - az_i - \delta_i + w,$$

Centroid

Bands

$$C_x = \frac{1}{6A} \sum_{j=0}^{n-1} (x_j + x_{i+j}) (x_j \ y_{j+1} - x_{j+1} \ y_j),$$

$$C_y = \frac{1}{6A} \sum_{j=0}^{n-1} (y_j + y_{i+j}) (x_j \ y_{j+1} - x_{j+1} \ y_j),$$

Area of the polygon is $A = \frac{1}{2} \sum_{j=0}^{n-1} (x_j \ y_{j+1} - x_{j+1} \ y_j)$

Variance through the moment of inertia

$$\sigma_y^2 = \frac{1}{12A} \sum_{j=0}^{N} (x_j y_{j+1} - x_{j+1} y_j) (y_j^2 + y_j y_{j_1}^2 + y_{j+1}^2)$$

Use global χ^2 of all tracklets to optimize relative shifts

Roman pots – relative alignment of planes

Roman pots – strip-level efficiencies

This looks good, but . . .

Roman pots – strip-level efficiencies

- Inefficiencies seen in data
 - originates at strip-level
 - efficiency can extracted by looking at found tracklets, "tag and probe"

Roman pots – strip-level efficiencies vs run

Changes wrt run number (here, for a given strip #350)

Roman pots – proton hit locations

Beam optics studies – local vs global

The transverse coordinates of a particle (proton) at a path length s

$$x(s) = \sqrt{\beta_x(s)\varepsilon} \cos \left[\phi_0 + \Delta\mu(s)\right] + D_x(s)\Delta p/p,$$

with betatron amplitude β , emittance ε , phase offset ϕ_0 , phase advance $\Delta \mu$, dispersion function D, relative momentum loss $\Delta p/p$.

The dependencies around a given location can be linearised,

$$x_1 = v_{x,1}x^* + L_{x,1}\theta_x^* + D_{x,1}\Delta p/p, \qquad x_2 = v_{x,2}x^* + L_{x,2}\theta_x^* + D_{x,2}\Delta p/p,$$

magnification $v(s) = \sqrt{\beta(s)/\beta^*} \cos \Delta \mu$ and effective length $L(s) = \sqrt{\beta(s)\beta^*} \sin \Delta \mu$. For elastic and central exclusive collisions $|\Delta p/p| \ll 1$, the above equations solved as

$$x^* = (L_{x,2}x_1 - L_{x,1}x_2)/|d|, \qquad \qquad \theta_x^* = (v_{x,1}x_2 - v_{x,2}x_1)/|d|,$$

where $|d| = v_{x,1}L_{x,2} - v_{x,2}L_{x,1}$ is the distance between the near and far pots.

Scattered protons – absolute alignment per run – x direction

$$A_x = \begin{pmatrix} L_{1f}/d & -L_{1n}/d & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & L_{1f}/d & -L_{1n}/d & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & L_{2f}/d & -L_{2n}/d & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & L_{2f}/d & -L_{2n}/d \\ 0 & 0 & 0 & 0 & 0 & 0 & -pv_{2f}/d & pv_{2n}/d \\ 0 & 0 & -pv_{1f}/d & pv_{1n}/d & -pv_{2f}/d & pv_{2n}/d & 0 & 0 \\ -pv_{1f}/d & pv_{1n}/d & 0 & 0 & -pv_{2f}/d & pv_{2n}/d & 0 & 0 \\ 0 & 0 & -pv_{1f}/d & pv_{1n}/d & 0 & 0 & -pv_{2f}/d & pv_{2n}/d \end{pmatrix},$$

where $d = |\det(v, L)|$, p is the beam momentum, and the transformation itself is

$$A_{x}\begin{pmatrix}\delta x_{1nT}\\\delta x_{1fT}\\\delta x_{1nB}\\\delta x_{1nB}\\\delta x_{2nT}\\\delta x_{2nT}\\\delta x_{2fT}\\\delta x_{2rT}\\\delta x_{2nB}\\\delta x_{2fB}\end{pmatrix} = \begin{pmatrix}-\overline{x^{*}}_{1T}\\-\overline{x^{*}}_{2B}\\-\overline{x^{*}}_{2B}\\-\overline{x^{*}}_{2B}\\-\overline{\sum} p_{x}_{TB}\\-\overline{\sum} p_{x}_{BT}\\-\overline{\sum} p_{x}_{BT}\\-\overline{\sum} p_{x}_{BB}\end{pmatrix}$$

From measured quantities to alignment

Scattered protons – absolute alignment per run

Use symmetries for interaction point (x^*, y^*) , momentum sums $(\sum p_x, \sum p_y)$, local hits (x, y)

Scattered protons – absolute alignment per run – aligned

Use symmetries for interaction point (x^*, y^*) , momentum sums $(\sum p_x, \sum p_y)$, local hits (x, y)

Scattered protons – absolute alignment, residuals – aligned

Scattered protons – deduced displacements vs run

- Deduced displacements
 - in x direction (lateral):
 an arm moves together
 similar changes in both arms
 in y direction (up-down):
 an arm moves together
 changes are opposite in arm 1/2

Points to common source: drifting LHC proton orbits

(RP movement system ensures reproducibility of about 20 μ m)

Results – collision vertex

- Reconstructed vertices
 - from one arm only
 - location of the primary pp interaction in the x-y plane at the IP
 - all distributions are well centred on (0,0)

Results – collision vertex

- Reconstructed vertices
 - from using both arms
 - joint distribution of x^* or y^* coordinates of the primary pp interaction
 - beam spot normally distributed with size $\sigma \approx 95 \,\mu{\rm m}$ with precision $6-7 \,\mu{\rm m}$

Results – momentum resolution – x direction

Results – momentum sums

Ellipses with semi-minor axes of 150 MeV (x) and 60 MeV (y) are overlaid

Results – momentum sums – true exclusive vs pile-up

Based on $(\sum_4 p_x \text{ vs } \sum_2 p_x, \sum_4 p_y \text{ vs } \sum_2 p_y)$

Summary

• Details

- Roman pot detectors of the TOTEM experiment
- to reconstruct the transverse momentum of scattered protons
- to estimate the transverse location of the primary interaction

• Results

- novel method, by finding a common polygonal area in the intercept-slope plane
- relative alignment of detector layers with $\,\mu{\rm m}$ precision
- tag-and-probe methods to extract strip-level detection efficiencies
- absolute alignment of the roman pot system system
- used in the physics analysis of central exclusive production events