

The Phase-2 Upgrade of the CMS Tracker for the High Luminosity LHC

Krisztina Márton HUN-REN Wigner RCP, Budapest

24th ZIMÁNYI SCHOOL WINTER WORKSHOP ON HEAVY ION PHYSICS

6th December 2024

High Luminosity LHC

- LHC Run 3 will continue till 2026 Summer
- High Luminosity LHC \rightarrow start in 2030
 - pp collisions @ 14 TeV
 - pileup ~ $140 200 \rightarrow 3-4 \text{ x LHC}$
 - $300 400 \text{ fb}^{-1} / \text{year} \rightarrow 10 \text{ x LHC}$
 - Pb+Pb and p+Pb @ 5.5 and 8.8 TeV

• Experiments have to upgrade their detector systems in order to fully exploit the delivered luminosity and to cope with the demanding operating conditions → **CMS Phase-2 Upgrade**

CMS Phase-2 Upgrade

24th Zimányi Winter School

Physics at HL-LHC

Higgs couplings

CMS

c_w

Projectio

Bun 2 syst unred /S

0.03 (Stat): 0.04 (S2); 0.06 (S1

0.03 (Stat): 0.04 (S2); 0.05 (S1

0.08 (Stat): 0.04 (S2); 0.05 (S1

0.03 (Stat); 0.05 (S2); 0.06 (S1)

after HL-LHC (3ab-1

0.01 (Stat): 0.02 (S2); 0.03 (S1

0.01 (Stat): 0.02 (S2); 0.03 (S1

0.01 (Stat): 0.02 (S2): 0.02 (S1

0.01 (Stat): 0.02 (S2); 0.04 (S1

- Higgs couplings **Study the properties of the Higgs-boson** (and other SM particles) after Run 3 (~2025) HL-LHC \rightarrow "Higgs factory" CMS 150M Higgs boson, 120k Higgs-pair Projection
 - precision measurements, observation of new decay channels and measurement of missing couplings, including the Higgs-Higgs self-coupling

- **Search for new physics** \rightarrow discovery potential for many BSM studies (SUSY, extra dimensions, etc)
 - new channels with low production cross-sections or with small couplings

Heavy quarks and secondary vertices

- **Tracker detector** → measure charged particle trajectories and where they originate from (p+p interaction point, decay of an other particle, interaction with detector material)
- Hadrons containing heavy quarks (b or c) travel few 100 µm from the interaction point before they decay
 - tracks of particles originating from this decay will cross each other in the decay point
 - \rightarrow identification of heavy flavor jets is based on the measurement of secondary vertices

- Pixel detector close to the interaction point
 - measure primary and secondary vertices
- Strip detector in the outer part of the tracker
 - precise momentum measurement

GNCL

CMS Phase-2 Tracker

- As part of the Phase-2 Upgrade, CMS will replace its entire tracking system
 - the new Phase-2 Tracker will consist of two parts, both built from different types of semiconductor detector modules

Inner Tracker

- 2 billion hybrid micropixels
- $25 \ \mu m \ x \ 100 \ \mu m \ pixel \ size$
- sensor thickness 150 µm
- 4.9 m² area

Outer Tracker

- 43 million microstrips + 170 million macro-pixels
- 190 + 25 m² area

Outer Tracker detector modules

Phase-2 OT \rightarrow 2 types of "p_T modules"

- standalone units, connected directly to the detector back-end electronics
- they consist of two silicon sensors separated by a few mm and read out by common front-end electronics

2S module

- Sensors with 2 x 1016 strips
- Strip size: 5 cm * 90 µm
- Front-end hybrids on the two side of the "sensorsandwich", wire-bonded to each strips
- Service hybrid for control, powering, and data transfer

senso 960 strip

ROH

POH

PS module

- Top sensor with 2 x 960 strips, bottom sensor with 32 x 960 macro-pixel
- Strip size: 2.4 cm * 100 µm
- Macro-pixel: 1.5 mm * 100 µm
- Two front-end hybrids + MPA
- Separate hybrid for powering and for read-out

Carbon fibre stiffeners

1 x CIC ASIC

8 x SSA ASIC

Contribution to the L1 trigger

- The tracker has to send out self-selected information at every bunch crossing
 - \rightarrow local data reduction in the front-end ASICs is needed to limit the volume of data that has to be sent out at 40 MHz
- OT p_T modules → reject the signals from particles below a certain p_T threshold

- tracks from charged particles are bent in the transverse plane by the 3.8 T magnetic field of CMS
 - → higher p_T means smaller bending radius
- front-end ASICs correlate the signals of top and bottom sensors and select the hit pairs ("stubs") compatible with particles coming from the interaction point and above the chosen p_T
- different sensor spacings to enable homogeneous p_T (>2GeV/c) filtering in different detector regions

Construction of the Outer Tracker

- Phase-2 Outer Tracker \rightarrow 3 sub-detectors \rightarrow >13.000 modules (5600 PS + 7600 2S)
 - construction of the whole detector ~ 3 years
 - + many-many years of designing and prototyping the parts
 - \rightarrow collaboration of CMS institutes + industrial companies
 - 1) Production of the different components (sensors, ASICs, electronics)
 - 2) Quality control and testing of the components
 - \rightarrow the detector will have to work in demanding operating conditions and provide good quality data for \sim 10 years without the possibility of repair or exchange anything
 - 3) Assembly and testing of the modules
 - \rightarrow (mostly) manual process, constantly high quality and precision are required
 - 4) Construction of the sub-detectors
 - 5) Install the whole detector to the CMS cavern

Module construction

4000 wirebonds / module \rightarrow OT > 50 million \rightarrow bonding done by machine

Provings using tradeout

QC of the hybrid electronics

- 13.000 modules \rightarrow 45.000 hybrid electronics
 - all hybrids will go through a thorough testing procedure before including them to the modules
 - visual inspection of the electronics with stereomicroscopes → information about the long-term reliability and about the usability in modules
 - 2/3 at CERN + 1/3 at Wigner
 - electrical testing → information about the functionality (at the moment of the testing)

Functional testing @ Cern Clean room for the VI @ Wigner

Front-end hybrids

- 4-layer, high density flexible circuits, laminated to carbon-fiber stiffener
 - folded back to allow wire-bonding both to the top and bottom side
 - Al-N spacers to adjust the hybrid thickness to the sensor-sandwich spacing

Visual inspection

Main check points during the VI

- Cleanliness of the circuit, soldering quality
 - Fingerprints on the ASICs imply non-correct (not ESD safe) handling during the hybrid production
- Alignment of the layers (flex, stiffener, stc)
 - Misaligned layers can cause problems during module assembly
- Adhesive aspects
 - Delamination of the layers can effect long-term functionality
- Search for damages
- Quality and cleanliness of the wirebond pads
 - Hard/impossible to bond on contaminated pads
 - Low quality bonds can break after some time

Large area optical scanner

- 50 cm x 90 cm table + 3D stepper motor + 5 Megapixel camera
 - 1 step ~ 6.25 μm
 - 1 pixel ~ 4.4 μm
 - Image size: 11.4 mm x 8.56 mm
 - LED ring light + coaxial light
- \rightarrow scanning controlled by a c++ software (running on a Linux computer)
- \rightarrow the coordinates of the images, the light and camera settings are defined in a config file
- Place for ~100 hybrids on the table
 - special holders were designed
 - both top and bottom side of the hybrids will be scanned
 - + the edges from the mirrors
- \rightarrow the whole table can be scanned during one night

Optical scanner measurements

- All of the hybrids arriving to Budapest will be scanned as part of the VI
 - Photos can be used for documentation and to observe long-term trends
 - Linear measurements (e.g. stretch, thickness)
 - at Cern, this will be done only on sample basis with a digital microscope
 - Identify all of the bond pads and measure their position
 - also plan to measure the cleanliness of each bond pad → can be used as input for the wire bonding

Side image (from mirror) \rightarrow green line fit on the two end, bow is visible in the middle

Summary

- HL-LHC will start in 2030
 - high luminosity (high statistics) \rightarrow possibility to observe rare processes and find new physics
- CMS will upgrade the detector system to cope with the operating conditions (e.g. high radiation)
 - the whole tracking system will be replaced
- CMS Phase-2 Tracker made from semiconductor modules (with pixels and/or with strips)
 - increased radiation hardness, compatibility with higher data rates
 - increased acceptance
 - higher granularity, reduced material
 - contribution to the L1 trigger
- Production of Outer Tracker components and modules already started, will continue in the next ~2 years
 - Wigner participates in the visual inspection of the hybrid electronics
- The new Tracker will be installed in the CMS cavern in 2029/2030

Thank you for your attention!

This work is supported by NKFIH OTKA K143477.