Precision luminosity calibration with proton-proton collisions at the CMS experiment

Zimányi School 2024

Attila Rádl

Luminosity

Luminosity: relation between the event rate and the cross section

 $dN/dt = L_{inst} \sigma_p$

Total integrated luminosity (fb⁻¹) Time integrated: represents the amount of data recorded

L = ∫**L inst dt**

Number of interesting events in a sample

N = L σ p

Luminosity for colliding beams

- Precise measurement of absolute luminosity
- Luminosity for two "head-on" colliding bunches
	- Essential properties: proton density function (ρ _i), number of protons in the bunches (Nⁱ_{1/2})
	- Effective area: beam overlap integral

$$
\mathcal{L}_{inst}^i = N_1^i N_2^i f \int \rho_1(x, y) \rho_2(x, y) dx dy = N_1^i N_2^i f \int \rho_{x1}(x) \rho_{x2}(x) dx \int \rho_{y1}(y) \rho_{y2}(y) dy
$$

Assumption: x-y direction factorization

No precise, direct measurement for $p(x)$

Van der Meer method: beam profile scan

Separate the two beams and measure the rate continuously

 $\Sigma_{x(y)}$

Rate

 $\overline{\mathsf{Peak}_{\mathsf{X}(\mathsf{Y})}}$

 R_0

$$
\int \rho_{x1}(x)\rho_{x2}(x)dx = \frac{R_x(0)}{\int R_x(\Delta)d\Delta} = \sqrt{2\pi} \Sigma_x
$$

- Event rate from luminometers
- Beam orbit monitoring with Beam Position Monitors (BPM)

Detector specific calibration constant: visible cross-section

$$
\sigma_{\text{vis}} = \frac{2\pi\Sigma_x\Sigma_yR_0}{N_1^iN_2^i f}
$$

Displacement

BRIL

Separate the two beams and measure the rate continuously

Separate the two beams and measure the rate continuously

 $\Sigma_{x(y)}$

Rate

 $\overline{\mathsf{Peak}_{\mathsf{x}(\mathsf{Y})}}$

 R_{0}

$$
\int \rho_{x1}(x)\rho_{x2}(x)dx = \frac{R_x(0)}{\int R_x(\Delta)d\Delta} = \sqrt{2\pi} \Sigma_x
$$

- Event rate from luminometers
- Beam orbit monitoring with Beam Position Monitors (BPM)

Detector specific calibration constant: visible cross-section

$$
\sigma_{\text{vis}} = \frac{2\pi \Sigma_x \Sigma_y R_0}{N_1^i N_2^i f}
$$

Expectation: same σ_{vis} for regular conditions

$$
R = \mathcal{L}_{inst}\sigma_{vis}
$$

Displacement

Beam position for the calibration

- Nominal defined by LHC magnet configuration
- Beam position monitors (BPM) to measure the orbit of the circulating beams
	- Based on image charges
	- Orbit integrated position for each second
	- Diode ORbit and OScillation (DOROS) inside the steering magnets
	- Arc BPMs placed outside in LHC arcs
		- Measuring the displacement compared to closed orbit, the positions are extrapolated to the IP using the LHC optics model
	- Average between the measurements of the two sides gives the position at the IP

Orbit during vdM scans

- Several scan types, each scan pair contains two orthogonal scans
- Average position per scan step (measurements performed every second)
	- \circ Uncertainty is the std dev of the position measurements within a scan step
- Horizontal (X) and vertical (Y) positions of the two beams provided by DOROS

Comparison between measured and nominal

- Difference between measured and LHC nominal beam separations per scan step as a function of time
- Solid lines: measured steps (30s) for head-on periods just before and after the scans
	- Slow orbit drift component applied as a time-dependent correction

Separation:

 Δ = Beam 1 - Beam 2

Separation: Δ = Beam 1 - Beam

LHC beam positions

 $\boxed{\mu m}$ \mathbf{Q}

BRIL

Fill 8999 (2023, 13.6 TeV)

CMS DP 2024-068

ATTILA RADL PRECISION LUMINOSITY CALIBRATION AT THE CMS EXPERIMENT 9

DOROS

Assumption: smooth dependence between measured and nominal positions

Stationary plane

$$
\text{BPM}_{x/y} - \text{linOD}_{x/y} =
$$

BPMy/x - linODy/x =

Two beams fitted separately

- Assumption: smooth dependence between measured and nominal positions
- Length-scale: BPM_{x/v} = α × Nom_{x/v}, where $\alpha \approx 1$

Scanning plane BPM_{x/y} **- linoD**_{x/y} =
$$
\alpha \times \text{No}
$$

Stationary plane BPM_{y/x} **- linoD**_{y/x} =

Two beams fitted separately

- Assumption: smooth dependence between measured and nominal positions
- Length-scale: BPM_{x/v} = α × Nom_{x/v}, where $\alpha \approx 1$
- Repulsion: beam-beam deflection depends on the nominal separation BB(ΔNom)
	- \circ Fitted magnitude (β) to ensure the compatibility (ideally $\beta \approx 1$, if all the **CMS** Preliminary HFET, vdM1 bunches are colliding)

Scanning plane

Stationary plane $BPM_{\nu/x}$ - $\text{linOD}_{\nu/x}$ =

Two beams fitted separately

BPM_{x/y} - linOD_{x/y} = α × Nom_{x/y} + β × BB_{x/y}(Δ Nom_{x/y}) + const_{x/y}

 $im1 X$

im₁Y

CMS PAS LUM-22-001

LUN-22-001

600

PAS

Fill 8381 (2022, 13.6 TeV)

 -600

 -400

- Assumption: smooth dependence between measured and nominal positions
- Length-scale: BPM_{x/v} = α × Nom_{x/v}, where $\alpha \approx 1$
- Repulsion: beam-beam deflection depends on the nominal separation BB(ΔNom)
	- \circ Fitted magnitude (β) to ensure the compatibility (ideally $\beta \approx 1$, if all the bunches are colliding)
- Factor to address misalignment between measured and nominal plane (y)
	- \circ The coordinate systems may not be perfectly aligned (ideally $\gamma \approx 0$)

Scanning plane

Stationary plane

$$
\text{BPM}_{x/y} - \text{linOD}_{x/y} = \alpha \times \text{Nom}_{x/y} + \beta \times \text{BB}_{x/y}(\Delta \text{Nom}_{x/y}) + \text{const}_{x/y}
$$

BPM_{y/x} - linOD_{y/x} = γ × Nom_{x/y} + (γ/α × β) × BB_{x/y}(Δ Nom_{x/y}) + const_{v/x}

Two beams fitted separately

 $im1$

im₁Y

Fit parameters

- Expectation: α and β parameters are stable over long time periods
	- Several fitting procedures based on globally fitted parameters

Fitted positions

Residual beam positions **Residual orbit drift = BPM - linOD - Fitted**

- Difference between the measurements that are cleaned from linear orbit drift and the fitted model
- Fitted constants const_{x/y} are not subtracted
	- Considered as part of the magnetic hysteresis effect
- Residuals are added to the nominal positions to address the residual movement of the beams The constants const_{x/y} are not subtracted
 \circ Considered as part of the magnetic hysteresis effect

esiduals are added to the nominal positions to address the residual

movement of the beams

alibration constant ($\sigma_{$
- Calibration constant (σ_{vis}) is calculated for each fit strategy
	-

Preliminary uncertainties in Run 3

Uncertainty on the σ_{vis} estimations (VdM)

Coming from the extrapolation of the calibration to high pileup conditions, and from the stability of the measurements

Preliminary uncertainties in Run 3 Systematic sources

<u>beam current of the c</u> Residual beam positions uncertainty is correlated over the years

Uncertainty on the σ_{vis} estimations (VdM)

Coming from the extrapolation of the calibration to high pileup conditions, and from the stability of the measurements

Overview

• Preliminary luminosity results for Run 3 (2022, 2023)

- Total estimated uncertainty is close to 1% for both data-taking periods
- Significantly lower than the Run 2 preliminary results (around 2.5%)
- Final 2016 uncertainty (1.2%) comparable with our preliminary results in Run 3
- Precise beam position measurements are crucial for the calibration
	- Linear and residual orbit drift corrections are applied on the nominal LHC beam positions
	- The corresponding uncertainty has small impact compared to some of the other sources

since the new method is introduced

This work was supported by the National Research, Development and Innovation Office of Hungary (K 143460, K 146913, K 146914, 2021-4.1.2-NEMZ_KI-2024-00036)

Backup

References

- CMS Collaboration, "Development of the CMS detector for the CERN LHC Run 3", *[CERN-EP-2023-136](https://cds.cern.ch/record/2870088?ln=en)*
- *●* CMS Collaboration, "Luminosity measurement in proton-proton collisions at 13.6 TeV in 2022 at CMS", *[CMS PAS LUM-22-001](https://cds.cern.ch/record/2890833/files/LUM-22-001-pas.pdf)*
- CMS Collaboration, "Measurement of the offline integrated luminosity for the CMS proton-proton collision dataset recorded in 2023", *[CMS DP 2024-068](https://cds.cern.ch/record/2904808/files/DP2024_068.pdf)*
- CMS Collaboration, "CMS Luminosity Measurement for the 2017 Data-Taking Period at 13 TeV", *[CMS PAS LUM-17-004](https://cds.cern.ch/record/2621960/files/LUM-17-004-pas.pdf)*
- CMS Collaboration, "CMS Luminosity Measurement for the 2018 Data-Taking Period at 13 TeV", *[CMS PAS LUM-18-002](https://cds.cern.ch/record/2676164/files/LUM-18-002-pas.pdf)*
- CMS Collaboration, "Precision luminosity measurement in proton-proton collisions at 13 TeV in 2015 and 2016 at CMS", *[EPJC 81, 800 \(2021\)](https://arxiv.org/pdf/2104.01927.pdf)*

Requirement: linear signal-luminosity dependency or measuring and correcting non-linearity

Requirement: linear signal-luminosity dependency or measuring and correcting non-linearity

● Requirement: linear signal-luminosity dependency or measuring and correcting non-linearity

Requirement: linear signal-luminosity dependency or measuring and correcting non-linearity

EPJC 81, 800 (2021) **Pixel Luminosity Telescope (PLT)**

Pixel planes in a telescope

arrangement

- Phase-0 pixel sensors
- Run 3: rebuilt PLT, one

telescope equipped with

Phase-2 sensor prototypes

- Counting triple-coincidences
- Real-time, bunch-by-bunch

luminosity calculations

Requirement: linear signal-luminosity dependency or measuring and correcting non-linearity

BRIL

Fast Beam Condition Monitor (BCM1F):

- Silicon and diamond sensors mounted on a C-shape holder (48 altogether)
	- Run 3: fully equipped with silicon

sensors. Active cooling and Phase-2

prototypes

- Zero counting
- Machine induced background

measurements

Real-time, bunch-by-bunch lumi

● Requirement: linear signal-luminosity dependency or measuring and correcting non-linearity

Separate the two beams and measure the rate continuously

VdM calibration

• Collision rates measured as a function of the beam separation

PCC beam separation fit from 2018

PCC beam separation fit from 2018

 Δ ^{0.6} [mm]

23.95/22

 0.1276 ± 0.0007385

 56.96 ± 0.4969

 0.001039 ± 0.0009452

VdM (normalization) corrections I

- Charge current per bunch, corrected for ghosts and satellites
- Background subtraction (luminometer specific): intrinsic noise measured for empty bunch crossings or using super separation scans (6 σ_{b} separation in both directions)
- Linear and residual orbit drift corrections: from interpolation between measured head-on positions and positions per step during scans
- Length scale: correction of the nominal beam positions to use the CMS length scale extracted from vertex positions

VdM (normalization) corrections II

Beam-beam effects: electromagnetic interaction between the two beams leads to a deflection from the nominal position and an optical distortion effect on the bunch shapes (dynamic-beta)

Non-factorizable x and y bunch proton density function, calculated from specific separation scans (imaging, offset and diagonal) or by studying the luminous region parameters in standard VdM scans

Fill 8381 (2022, 13.6 TeV)

400

BCID: 2965

Model: SG

 -0.4

 \bullet

CMS Prelimina HFET, vdM1

 -600

 -400

 -200

 $\mathbf 0$

.a.
te
te
c

 $\frac{1}{60}$ 0.04

ntensity 0.01

Bunch 0.00 -0.01

 0.03 0.02

Beam separation

200

1.00

0.995

 $\frac{1}{20}$ 0.990 0.985 **CMS** Preliminar

HFET, vdM1

CMS

Fill 8381 (2022, 13.6 TeV)

Corrections for data-taking (integration)

- Out-of-time corrections: packed trains of filled bunches arriving during data-taking
	- type-1: effect on the next bunch crossing
	- \circ type-2: late hits, nuclear excitations, etc
		- exponential time development
- Efficiency corrections: reduced response due to irradiation, ageing or other detector specific effects.
- Absolute calibration form short, vdM-like emittance scans recorded during physics runs since 2017

bis

Beam quality and position monitors

- Beam position monitors (BPM) to measure the orbit of the circulating beams, based on image charges
	- Diode ORbit and OScillation (DOROS) detectors
	- Arc BPM detectors
- **Beam current detectors**
	- DC Current Transformers (DDCT)
	- Fast Beam Current Transformers (FBCT)
- Measuring ghost and satellites
	- LHC Longitudinal Density Monitor (LDM)
	- LHCb Beam-Gas Imaging (BGI) using VELO

