3D pion source images in 200 GeV Au+Au collisions with EPOS

Emese Árpási Eötvös Loránd University, Budapest

24rd ZIMÁNYI SCHOOL WINTER WORKSHOP **ON HEAVY ION PHYSICS**

December 2-6, 2024 Budapest, Hungary

1. Femtoscopy and correlation functions Lévy-type source function

Investigation of the correlation function of identical boson pairs $C_2(q, K) = \frac{\int d^4 x D(x, K) |\psi_q(x)|^2}{\int d^4 x D(x, K)}$

> The pair source distribution:

$$D(x,K) = \int d^4X S\left(X + \frac{x}{2},K\right) S\left(X - \frac{x}{2},K\right)$$

 $\succ C_2(q, K)$ can be measured in experiments

- \succ The D(x, K) function can be reconstructed in event generators
- > General form of the function:

$$\mathcal{L}(r, R_x, R_y, R_z, \alpha) = \frac{1}{(2\pi)^3} \int d^3q \ e^{iqr} e^{-\frac{1}{2}|q_x^2 R_x^2 + q_y^2 R_y^2 + q_z^2 R_z^2|^{\frac{\alpha}{2}}}$$

6. Results

 \succ Lévy-exponent: $\alpha \approx 1.2 - 1.7$, not Gaussian ($\alpha < 2$), small dependence on m_T

- \succ Decrease with increasing $N_{part} \rightarrow$ opposite trend compared to PHENIX
- $\succ \langle \alpha \rangle_{m_T}$ vs PHENIX \rightarrow good agreement for peripheral, deviation for central
- > Centrality trend driven by particle density, long-range Coulomb scattering?

- K dependence: contained in R_{χ} , R_{γ} , R_{z} , α
- ➤ 1 dimensional case:

$$\mathcal{L}(r, R, \alpha) = \frac{1}{\pi} \int_0^\infty dq \cos qr \, e^{-\frac{1}{2}|qR|^2}$$

- \succ Lévy exponent: $\alpha < 2$ power-law, $\alpha = 2$ Gaussian
- Lévy-scale: R, geometric properties

$$S(r) = \mathcal{L}(r, R, \alpha) \Rightarrow D(r) = \mathcal{L}(r, 2^{\frac{1}{\alpha}} R, \alpha)$$

4. Methods

- $\gg \sqrt{s_{NN}}$ = 200 GeV Au+Au collisions generated by the EPOS program package
- \succ Separated the measurements into centrality and m_T classes
- \geq 3 dimensional pair-distribution \Rightarrow 1 dimensional projections according Bertsch-Pratt-coordinates
- Fitting 1 dimensional Lévy-functions to the projections
- \succ For the 3 projection of a 3D distribution: fitting simultaneously with same Lévy exponent but different Lévy scales

- \succ Lévy scale: different values for the different projections ($R_l > R_o > R_s$)
- \succ Lévy scale is decreasing with increasing $m_T \rightarrow$ collective behavior
- Geometrical centrality dependence
- \blacktriangleright For larger m_T values the R_{osl} values are getting closer to each other

5. Examples of the fitted event by event distribution for the three projections

- Good description by elliptically contoured Lévy-stable distribution
- Similar fits repeated for thousands of events
- > Event-by-event mean and standard deviation of parameters extracted

References

[1] T. Csörgő, S. Hegyi and W. A. Zajc, Eur. Phys. J. C 36 (2004), 67-78 [2] T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc, AIP Conf. Proc. 828 (2006) no.1, 525

- Average R values vs. new final 1D PHENIX analysis (Ref[4])
- Good agreement with the experiment!
- > EPOS seems to describe the source scales well

Summary

- > 3-dimensional pion pair source investigated in 200 GeV Au+Au collisions generated with EPOS
- Source shape described well by 3D Lévy-stable distributions on an event-by-event basis
 - In 1D the observed Lévy shape is not due to angle-, nor event-averaging
 - \blacktriangleright Event-by-event 3D Lévy \rightarrow due to Lévy walk in scatterings & decays
- Parameters compared to new final PHENIX angle-averaged results (Ref [4])

[3] A. Adare et al. [PHENIX], Phys. Rev. C 97 (2018) no.6, 064911

[4] Abdulameer, N.J., et al. (2024), arXiv:2407.08586 [nucl-ex]

[5] S. Afanasiev et al. [PHENIX], Phys. Rev. Lett. 100 (2008), 232301

\succ Exponent (α) agrees with experiment for peripheral, deviates for central

