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Generalized thermodynamic relations are introduced into the framework of a relativistic perfect spin hydrodynamics. They allow for consistent treatment
of spin degrees of freedom, including the use of spin tensors whose structure follows from microscopic calculations. The obtained results are important for
establishing consistency between different formulations of spin hydrodynamics and form the basis for introducing dissipative corrections.

Introduction
Recent measurements of non-zero spin polarization of hyperons and vector mesons pro-
duced in relativistic heavy-ion collisions have triggered broad interest in the spin polar-
ization phenomena in strongly interacting matter. On the theory side, there exist several
approaches (classical and quantum) to incorporate spin degrees of freedom into the frame-
work of relativistic hydrodynamics as [5], [3]. The later has become the main theoretical
tool used to describe the spacetime evolution of strongly interacting matter produced in
heavy-ion collisions, hence, the inclusion of spin dynamics in the hydrodynamics formal-
ism seems to be an inevitable necessity. The differences appears already at the basic level
of relativistic thermodynamic relations and definitions of the fundamental macroscopic
quantities such as the spin tensor.
In this work we critically reexamine thermodynamic relations used in perfect spin hydrody-
namics of particles with spin 1/2 and propose to introduce their generalized (tensor) forms
that can be used for large values of the spin polarization tensor, ωµν, andwith kinetic-theory
motivated forms of the GLW spin tensor Sλ,µν. In this way, we remove a gap between the
works that use kinetic-theory concepts as the starting point and the works that use phe-
nomenological expressions for the spin tensor and construct dissipative corrections using
the positivity of the entropy production as the main physical ansatz.

Israel-Stewert approach to spin hydrodynamics
To describe relativistic systems, one must generalize the scalar thermodynamic relation to
tensorial forms. This generalization is achieved bymultiplying the scalar relation by the flow
four-vector uµ. To incorporate spin, [4] begins by postulating phenomenological thermo-
dynamic relations, introducing the spin chemical potential Ωαβ and the spin density tensor
Sαβ
eq , and combining these into the following equation

ε + P = Tσ + µn +
1

2
ΩαβS

αβ
eq . (1)

Furthermore, by multiplying the scalar equation by uµ, as prescribed by the Israel-Stewart
(IS) method, the spin current is defined as

Sλ,µν
eq = uλSµν

eq .

This approach extends the thermodynamic relations accordingly

Sµ
eq = Pβµ − ξNµ

eq + βλT
λµ
eq − 1

2
ωαβS

µ,αβ
eq , (2)

dSµ
eq = −ξ dNµ

eq + βλ dT
λµ
eq − 1

2
ωαβdS

µ,αβ
eq , (3)

d(Pβµ) = Nµ
eq dξ − T λµ

eq dβλ +
1

2
Sµ,αβ
eq dωαβ. (4)

The equilibrium energy-momentum tensor and baryon number current are given in their
standard forms as T µν

eq = εuµuν − P∆µν, Nµ
eq = nuµ. To study the system’s behavior,

one must adopt a counting scheme. A frequently used scheme assumes ωµν ∼ O(∂1) and
Sµν ∼ O(∂0). However, this approach is inconsistent, as Sµν ∼ ωµν. Similarly, considering
ωµν ∼ Sµν ∼ O(∂1) fails because the term ωµνS

µν, which is a second-order contribution,
is neglected. One solution to this issue is to describe the local equilibrium with spin while
excluding gradients. This approach focuses on expanding and counting quantities in terms
of the spin polarization tensor O(ωµν), rather than relying on gradients. Another challenge
arises from the discrepancy between the assumed form of the spin tensor, Sλ,µν

eq = uλSµν
eq ,

and the forms derived in certain calculations, such as those in kinetic theory.

Insights from Kinetic Theory
The basic object used in the kinetic theory is the phase-space distribution function f (x,p).
For particles with spin, f (x,p) is generalized to a spin dependent distribution f (x,p, s). In
local equilibrium, the spin dependent distribution functions for particles (+) and antiparti-
cles (−) have the form

f±(x, p, s) = exp
(
−pµβ

µ ± ξ + 1
2 ωαβs

αβ
)
. (5)

where βµ, ξ and ωαβ are functions of space and time coordinates x and play the same role as
βµ, ξ and ωαβ defined in thermodynamic relations. By integrating the equilibrium distribu-
tion functions over momentum and spin degrees of freedom, one obtains the macroscopic
currents and tensors

Nµ
eq =

∫
dP dS pµ

[
f+
eq(x, p, s)− f−

eq(x, p, s)
]
, (6)

T µν
eq =

∫
dP dS pµpν

[
f+
eq(x, p, s) + f−

eq(x, p, s)
]
, (7)

Sλ,µν
eq =

∫
dP dS pλ sµν

[
f+
eq(x, p, s) + f−

eq(x, p, s)
]
. (8)

The internal angular momentum tensor sαβ presented in distribution function is defined in
terms of the particle four-momentum pα and spin four-vector sα

sαβ =
1

m
εαβγδpγsδ, pαsα = 0, sα =

1

2m
εαβγδpβsγδ. (9)

The Boltzmann entropy for the system in kinetic theory is defined as

Sµ
eq = −

∫
dP dS pµ

[
f+

(
ln f+ − 1

)
+ f− (

ln f− − 1
)]

. (10)

From this definition, we gain additional insights from kinetic theory, particularly regarding
thermodynamics, the entropy current, and the equilibrium forms of T µν andNµ. As shown
in [1], these relations are expressed as follows:

Sµ = N µ − ξNµ + βλT
λµ − 1

2
ωαβS

µ,αβ, N µ = ctgh(ξ)Nµ
eq ̸= Pβµ, (11)

dSµ = −ξ dNµ + βλ dT
λµ − 1

2
ωαβ dS

µ,αβ, (12)

dN µ = Nµ dξ − T λµ dβλ +
1

2
Sµ,αβ dωαβ. (13)

We note that these forms represent a slight generalization of those obtained in the Israel-
Stewart (IS) approach. However, to treat the system consistently, we must compute the
equilibrium forms of the currents.

Spin Polarization Tensor Expansion
The main idea is to expand the distribution function for each current as follows:

f±
eq = exp(−p · β(x)± ξ(x))

[
1− 1

2
ωαβs

αβ +
1

8
(ωαβs

αβ)2 + . . .

]
. (14)

We calculate all currents up to second order in ωµν, which is dimensionless in natural units.
An important technical step in understanding this expansion is the following integral prop-
erty: ∫

dS sα = 0. (15)

This property explains why the second-order expansion is crucial to revealing the spin’s
presence in the system. Equations (6)–(7), after expansion, account only for the zero-spin
and quadratic contributions, whereas Equation (8) is already linear in spin. The linear term
in the expansion treats Sλ,µν as quadratic in spin. This approach is consistent with equation
(11), where quadratic terms such as ωαβS

αβ appear explicitly.

Tensor Structure of Currents
After performing the second-order expansion as outlined in [1, 2], we observe that, in the
equilibrium setup, the currents take the following form:

Nµ
eq = n̄uµ + ntt

µ, (16)

T µν
eq = ε̄uµuν − P̄∆µν + Pk k

µkν + Pω ω
µων + Pt (t

µuν + tνuµ), (17)

Sλ,µν
eq = uλ [A (kµuν − kνuµ) + A1t

µν] +
A3

2

(
tλµuν − tλνuµ +∆λµkν −∆λνkµ

)
. (18)

All present coefficients depends on (T, µ, k2, ω2) [1, 2].

Outlook and discussion
In this work we have introduced generalized thermodynamic relations into the framework
of a relativistic perfect spin hydrodynamics. They allow for a consistent treatment of spin
degrees of freedom, including the use of spin tensors whose structure follows from mi-
croscopic calculations. Our main observation that a commonly used scalar version of ther-
modynamic relations should be replaced by the tensor form is very general — the spin hy-
drodynamics introduces a new hydrodynamic variable that has a tensor structure, hence,
in local equilibrium all currents and tensors may a priori have a richer structure than that
used in spinless hydrodynamics.
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