Measurements of D⁰ and D^{*} production in p+p collisions at $\sqrt{s} = 510$ GeV in STAR experiment

Subhadip Pal, for the STAR collaboration Czech Technical University in Prague

CZECH TECHNICAL UNIVERSITY **IN PRAGUE**

Introduction

This poster is centered around an investigation into the production of D^0 and D^* mesons as a function of transverse momentum (p_T) in proton-proton (p+p) collisions at a center-of-mass energy of $\sqrt{s} = 510$ GeV conducted within the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The results of this analysis will serve to constrain the charm-anticharm production mechanisms in p+p collisions. We present the ongoing signal extractions of the D⁰ and D* mesons from the minimum bias events recorded during the p+p collisions at $\sqrt{s} = 510$ GeV at STAR in 2017.

Motivation

- □ Studying charm meson production allows for comparisons between experimental results and theoretical models (e.g., perturbative QCD, factorization frameworks).
- □ Modifications of the charm meson production in heavy-ion collisions with respect to p+p provide insights into QGP.

D⁰ Signal Extraction

- \Box Unlike-sign pions and kaons were paired [K⁻ π^+ , K⁺ π^-].
- Two independent background estimation methods were deployed for D⁰ signal extraction :
- like-sign pairs [K^{- π -, K^{+ π +}]}
- track-rotation method [pion tracks are paired with kaon tracks with reversed 3-momentum (180° rotation)]
- \Box Intervals of pair p_T used for the analysis: 0-1.1, 1.1-1.6, 1.6-2.1 GeV/c.

STAR Detector

- □ The STAR detector is excellent in tracking and identifying charged particles at mid-rapidity ($|\eta| < 1$), while providing complete azimuthal coverage.
- The majority of the subsystems are situated within a solenoidal magnetic field of 0.5 T.

- □ Vertex Position Detector (VPD) to trigger minimum bias events and removing pileup vertices.
- □ Time Projection Chamber (TPC): main tracking detector, momentum determination, particle
 - identification via ionization energy loss (dE/dx).
- Time Of Flight (TOF): particle identification via velocity (β).

D^{*} Signal Extraction

- Histogram was populated with the mass difference $M_{K\pi\pi}$. $M_{K\pi}$.
- Wrong-sign combination and side-band method were used to reconstruct background to extract the D* signal.
- \Box Intervals of the triplet p_T used here are: 2-3, 3-4.2, 4.2-6 GeV/c.

Analysis Method

- □ About 1.11 billion minimum bias p+p events at $\sqrt{s} = 510$ GeV recorded in 2017 are used in this analysis.
- \Box Hadronic decay channels are used to reconstruct D⁰ and D*.

 $D^0(ar{D^0}) \xrightarrow{B.R.=3.947\%} K^{\mp} \pi^{\pm} \; ; \; \; D^{*\pm} \xrightarrow{B.R.=67.7\%} D^0(ar{D^0}) \pi^{\pm}_s \xrightarrow{B.R.=3.947\%} K^{\mp} \pi^{\pm} \pi^{\pm}_s$

□ Track Quality Cuts

• Event Selection

$V_{z[TPC]} - V_{z[VPD]}$	< 4.0 cm	number of TPC fit points	> 18
V _{z[TPC]}	< 60 cm	number of TPC fit points number of max possible TPC fit points	> 0.52
V _{x[TPC]}	(-0.3, 0.14) cm	global DCA	< 1.5 cm
V _{y[TPC]}	(-0.26, 0.02) cm	p _T	> 0.2 GeV/c
		$ \eta $	< 1

	$p_T \le 1.6 \text{GeV/c}$	$p_T > 1.6 \text{ GeV/c}$
Kaons	$-2.5 < n\sigma_K^{dE/dx} < 3.0$	$-2.5 < n\sigma_K^{dE/dx} < 3.0$
	<i>p</i> dependent cut on $n\sigma_K^{1/\beta}$	<i>p</i> dependent cut on $n\sigma_K^{1/\beta}$
Pions	$-3.0 < n\sigma_{\pi}^{dE/dx} < 3.0$	$-3.0 < n\sigma_{\pi}^{dE/dx} < 3.0$ if TOF matched
	<i>p</i> dependent cut on $n\sigma_{\pi}^{1/\beta}$	<i>p</i> dependent cut on $n\sigma_{\pi}^{1/\beta}$ if TOF matched
		$-2.5 < n\sigma_{\pi}^{dE/dx} < 2.5$ if no TOF info

D⁰ daughter Kaon and Pion PID Cuts

For Soft Pion (π_s) identification, TOF pion cut was loosened for p < 1.6 GeV/c to select more low momentum tracks.

References

1. L. Adamczyk et. al. (STAR Collaboration), 2012, Phys. Rev. D 86, 072013.

 \Box In the wrong-sign combination, the soft pion (π_s) was paired with the D⁰ daughter pion of the opposite charge. In the side-band method, the $M_{K\pi}$ had been lying between two side-bands: $1.64 - 1.74 \text{ GeV/c}^2$ and 2.01 - 2.11 GeV/c^2 , i.e. outside the D⁰ mass window.

Summary and Outlook

- \Box D⁰ and D* signals were extracted up to p_T of 2.1 GeV/c and 6.0 GeV/c, respectively using Minimum Bias p+p data at 510 GeV.
- □ Analyses were performed with two independent background estimation methods.
- □ Efficiency and systematic uncertainties to be determined next for cross-section calculation.

□ Barrel High Tower triggered data is also being analyzed currently for raw yield measurements at higher p_T.

Acknowledgement

The work was supported by the Grant Agency of the Czech Technical University in

