CMS luminosity measurement for nucleus-nucleus collisions at 5.02 TeV

Krisztián Farkas CMS-ELTE Lendület group Eötvös University, Budapest

Luminosity introduction

- Determines the rate of particle collisions
- Relates the cross section of process to the observed rate

$$R(t) = \frac{dN}{dt} = L(t) \cdot \sigma_{process}$$
$$\sigma_{vis} = \frac{2\pi \cdot \Sigma_x \cdot \Sigma_y}{N_1 \cdot N_2 \cdot f \cdot n_b} \cdot R_{peak}$$

Why precise luminosity measurement is important?

→ Real-time feedback on accelerator performance

Luminosity measurement

- Using well-known physics process
- Using machine parameters → Beam overlap widths are obtained from vdM scan

- Beams are separated in X, Y in discrete steps and measure the rate
- Various corrections applied
- Detector dependent calibration constant $\sigma_{_{\! V\!i\! S}}$ measured then used during physics fills

CMS luminometers

Requirement: linear measured rate-luminosity response or at least correctability

- Pixel Luminosity Telescope
- Hadron Forward calorimeters
- Fast Beam Condition Monitor
- Beam Position Monitors

Corrections to absolute luminosity

- Bunch current normalization
- Non-collision rate
- Orbit drift
- Length scale calibration
- Beam-beam effects
- Transverse factorizability

Source	2015 [%]	2018 [%]	Corr
Normalization uncertainty			
Bunch population			
Ghost and satellite charge	0.3	0.5	Yes
Beam current calibration	0.2	0.2	Yes
Noncolliding bunches			
Noncollision rate	0.5	0.2	No
Beam position monitoring			i i
Random orbit drift	0.5	0.1	No
Systematic orbit drift	0.2	0.2	Yes
Beam overlap description			
Length scale calibration	0.5	0.5	Yes
Beam-beam effects	0.2	0.3	Yes
Transverse factorizability	1.1	1.1	No
Result consistency			
Cross-detector consistency	2.5	0.4	No
Scan-to-scan variation		0.5	No
Statistical uncertainty	0.2	0.1	No
Integration uncertainty			
Detector performance	-		
Cross-detector stability	0.7	0.8	No
Noncolliding bunches			
Noncollision rate	0.1	0.1	Yes
Total normalization uncertainty	2.9	1.5	
Total integration uncertainty	0.7	0.8	_
Total uncertainty	3.0	1.7	—

Combined 2015+2018: 1.6% precision

Corrections to absolute luminosity

- Bunch current normalization
- Non-collision rate
- Orbit drift
- Length scale calibration
- Beam-beam effects
- Transverse factorizability

