

CMS luminosity measurement for nucleus-nucleus collisions at 5.02 TeV

Krisztián Farkas ^{1,2}

HUND & VINIMO

¹CMS-ELTE Lendület group Eötvös University, Budapest ²On behalf of the CMS Collaboration

Luminosity and its determination

- Determines the rate of particle collisions
- Relates the cross section of the process to the observed rate

 $R(t) = \frac{dN}{dt} = L(t) \cdot \sigma$

vdM method

- Measure the rate while beams are separated in X, Y in discrete steps
- Use fills with special beam conditions

Why precise luminosity measurement is important?

- Provides real-time feedback on accelerator performance and input to optimal detector operation (online)
- Essential for most physics analysis which measures / relies on cross sections (offline)

How we can measure luminosity?

Using well-known physics process if theoretical cross section is precisely known:

 $L(t) = \frac{R_{process}(t)}{\sigma_{process}}$

Using machine parameters →**beam overlap** widths obtained from vdM scans

Run II luminosity scan program

- Measured in two parts: 2015 and 2018
- <u>vdM scan:</u> $\pm 5.5(7.5)\sigma_b$ in x (y) in 2015 and $\pm 4(3)\sigma_b$ in x (y) in 2018 maximal displacement in each direction
- <u>Offset scan</u>: like VdM, but ±3σ_b transverse displacement both 2015 and 2018
- Diagonal scan: beams separated in both x and y at the same time with $\Delta x = \pm \Delta y, \pm 3\sigma_b$ in 2018
- Length-scale scan: two beams move together in the same direction ±1.4(1.8)σ_b in x (y) in 2015

Voor	r Fill	$\sqrt{S_{NN}}$	11	φ	β^*	N_1 / N_2	$\mathcal{L}_{ ext{init}}$		Number of scan pairs				
lear		[TeV]	n _b	[µrad]	[m]	[×10 ¹¹ charges]	$[\times 10^{27} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	vdM	length scale	off-axis	emittance	super sep	
2015	4689	5.02	400	0	0.8	43.0 / 44.7	1.25	3	1	1	0	0	
	7442	5.02	288	160	0.5	97.3 / 98.7	2.11	1	1	2	1	0	
2018	7443	5.02	288	160	0.5	91.2 / 92.8	1.91	4	0	3	3	2	
	7483	5.02	620	160	0.5	96.6 / 98.5	3.98	0	1	0	1	0	

Corrections to absolute luminosity

Bunch current normalization

 bunch-by-bunch corrected for ghosts (charges in nominally empty BCIDs) and satellites (charges leaking out of the main RF bucket into nearby buckets)

Beam-beam effects

 Calibration of the nominal transverse beam positions wrt the CMS tracker coordinate system

Sole vola 2000 Sole vola 2000 Sole vola 2000 Sole vola 200	[mu] ion	2 Fill 4689, horizontal scan Forward 1.5 X ² /0.01 ± 0.004 X ² /0.0.1 = 2.8 / 2	PbPb 2015 (5.02 Te • Backward Slope: -0.011 ± 0.001 χ²/d.o.f. = 0.4 / 2	S[2 1.5	Fill 4689, vertical scan p Forward Skope: -0.015 ± 0.006 x ² /d.o.f. = 6.8 / 2	PbPb 2015 (5.02 Backward Slope: -0.014 ± 0.0 X ² /d.o.f. = 0.4 / 2
--	----------	--	---	----	----------	--	--

 Assume proton density function is factorizable in x and y

$$h(x,y) = f(x) \cdot g(x)$$

- Apply various corrections
- Use multiple luminometers
- Measure detector dependent calibration constant σ_{vis} , then use it during physics fills to convert rate to luminosity

$$\sigma_{vis} = \frac{2\pi \cdot \Sigma_x \cdot \Sigma_y}{N_1 \cdot N_2 \cdot f \cdot n_b} \cdot R_{peab}$$

Displacement

CMS luminometers and LHC beam instrumentation

Requirements for CMS detectors: stable operation, linear rate-luminosity response, a way to measure and correct for deviation from ideal behaviour

Several real-time bunch-by-bunch luminosity monitors used in PbPb collisions, relying on zero-counting assuming Poisson probability distribution of signal

Pixel Luminosity Telescope

Hadron Forward Calorimeters

Two rings (3.15 < η < 3.50)</p>

- Three pixel detector planes in a telescope arrangement
- Counting triple coincidences of hits in planes
- Dedicated luminosity back end
- Occupancy-based counting method

Fast Beam Condition Monitor

- Silicon and diamond sensors mounted on a C-shape holder (24 altogether)
- Hit counting

LHC beam position monitors

- measure the orbit of the circulating beams, based on image charges
- Diode ORbit and OScillation (DOROS) detectors
- Arc BPM detectors

 electromagnetic interaction between the two beams leads to a deflection from the nominal position and a distortion of the bunch shapes (dynamic beta)

Orbit drift

- Change of beam orbit with respect to its nominal position during scans
- Measure by DOROS & arc BPMs

XY factorization

- Bunch proton density not perfectly factorizable into independent x and y components
- probed by constructing two dimensional luminosity distributions using on-axis (vdM) and off-axis (diagonal or offset) scans → fit with various 2D analytical models

Results

"Normalization" concerns the visible cross section (σ_{vis}) as determined from the van der Meer scan procedure, while the "Integration" concerns the stability and quality of the measurements by the luminosity subdetectors.

Normalizatio	on uncertaint	У	Integration	Integration uncertainty					
Source	2015 [%]	2018 [%]	Corr	Source	2015 [%]	2018 [%]	Corr		
Bunch population				Detector performance					
Ghost and satellite charge	0.3	0.5	Yes	Cross-detector stability	0.7	0.8	No		
Beam current calibration	0.2	0.2	Yes	Noncolliding bunches					
Noncolliding bunches				Noncollision rate	0.1	0.1	Yes		
Noncollision rate	0.5	0.2	No	Total normalization uncertainty	2.9	1.5	-		
Beam position monitoring				Total integration uncertainty	0.7	0.8	-		
Random orbit drift	0.5	0.1	No	Total uncertainty	3.0	1.7	-		
Systematic orbit drift	0.2	0.2	Yes						
Beam overlap description									
Length scale calibration	0.5	0.5	Yes						
Beam-beam effects	0.2	0.3	Yes						
Transverse factorizability	1.1	1.1	No						
Result consistency									
Cross-detector consistency	2.5	0.4	No						
Scan-to-scan variation	-	0.5	No						
Statistical uncertainty	0.2	0.1	No						

Reference

[1] The CMS Collaboration

Cms luminosity measurement for nucleus-nucleus collisions at 5.02 tev in run 2. *CMS-PAS-LUM-20-002*, 2024.

Zimányi School — Budapest 2024