Performance of the nHCal for ePIC experiment based on Simulations

Alexander Godál¹ (for the ePIC collaboration) \mathbf{P}_{i}

Jaroslav Bielčík¹, Alexandr Prozorov¹, Subhadip Pal¹, Leszek Kosarzewski² ¹Czech Technical University in Prague, FNSPE, Prague, Czech Republic ²The Ohio State University, Columbus, Ohio, United States

ELECTRON-ION COLLIDER

- Approved particle accelerator planned to be built in the next few years at Brookhaven National Laboratory
- Will repurpose a lot of infrastructure from the existing Relativistic Heavy Ion Collider (RHIC)
- First collider to have both colliding beams (electron and proton/ion) polarised
- Large range of center-of-mass energies:
 → from 20 GeV up to 140 GeV

PHYSICS GOALS

- Solve the proton spin puzzle
 - b how the constituent quarks and gluons and their interactions contribute to the nucleon's spin

e-accelerato

Accelerator

JUSTIFICATION FOR THE nHCal

Many low-*x* physics topics through diffractive events require nHCAL and/or greatly benefit over other channels

- Backed up by the H1 collaboration at HERA
- \rightarrow they realised that the lack of backward HCal was detrimental for low-*x* studies
 - ▷ [Nucl.Instrum.Meth.A 386 (1997) 397-408]
 - ▷ [Nucl.Phys.B 497 (1997) 3-30]
- Diffractive $J/\psi \rightarrow \mu^+\mu^-$ photoproduction is a crucial physics goal promised by ePIC
 - ▷ [Nucl.Phys.A 1026 (2022) 122447]

ELECTRON-PROTON Sartre: e+p \rightarrow e'+J/ $\psi(\mu\mu)$ +p', \sqrt{s} = $\sqrt{275\times18}$ (GeV)

- Produce precise 3D images of protons and nuclei
 - extending simplistic models and broadening our understanding of gluon dynamics inside nucleons
- Study the dense nuclear medium
 - Iooking for a steady state of saturation called colourglass-condensate

ePIC DETECTOR

Designed to combine many subsystems for tracking and vertexing, particle identification, electromagnetic calorimetry and hadronic calorimetry

- Located at the Interaction Point 6, at the current location of the STAR detector
- Spanning a cylindrical volume with the length of ~ 9.5 m and radius of ~ 2.67 m
- Asymmetrical design to accommodate the difference in energies of the opposing colliding beams
- Large coverage in pseudorapidity even more extended by the far detectors

- nHCal crucial below $x = 10^{-3}$
- nHCal crucial below $x = 10^{-2}$

SINGLE NEUTRON SIMULATIONS

The following simulations were done to study the performance of nHCal measurements of neutrons in terms of detection efficiency and position resolution

SETUP

- single neutron shot in Hcal_only geometry
- neutron energies of 1, 3, 5, and 10 GeV with $\theta = 150^{\circ}$ and $\phi = 45^{\circ}$
- each configuration consisting of 100 000 events

RECONSTRUCTION EFFICIENCY

- ↑ The ratio of reconstructed to generated neutrons
- Generally improves with higher energies
- Reaches sufficient values (~ 95.8%) at 5 GeV
 → Chosen energy for the following plots

NEGATIVE HADRONIC CALORIMETER

Sampling calorimeter located in the electron direction, serving as a tail catcher for the electromagnetic calorimeter in electron identification

ROLE

- Distinguish charged and neutral hadronic showers coming from jets originating from fragmentation of low Bjorken *x* partons
 - high neutron efficiency and good shower separation required
- Identify muons from vector meson decays

DESIGN

- 10 alternating layers:
 - ▷ non-magnetic steel 4 cm (absorber)
 - ▷ plastic scintillator 4 mm (active medium) [segmented in 10×10 cm layers]
- Signal readout:

ANGULAR RESOLUTIONS

- ↑ The difference of reconstructed and Monte Carlo angle
- In ideal scenario the width of the distribution should approach zero
- Also generally improves with higher energies
- Sharp peaks (more prevalent at lower energies) appear when all energy is deposited in cluster with single tile

Scintillator light guided by wavelength-shifting fibers
 Light collection managed by Silicon Photomultipliers (SiPM)

SUMMARY

- Obtained neutron detection performance from simulations:
 - ▷ efficiency > 95% for $E \ge 5 \text{ GeV}$
 - ▷ angular resolution improves with higher energies
- Negative Hadronic Calorimeter (nHCal) is critical for the ePIC detector as it enables precise studies at low-*x*
- Initial exclusion of such detector in the H1 experiment was later recognised as a significant limitation of physics output on key topics
- Baseline design is still being finalised in order to accommodate all physics requirements

ACKNOWLEDGEMENT

24th ZIMÁNYI SCHOOL WORKSHOP ON HEAVY ION PHYSICS December 2-6, 2024; Budapest

The work was supported by the Grant Agency of the Czech Technical University in Prague, grant No. SGS24/143/OHK4/3T/14.

The ePIC Collaboration https://www.epic-eic.org/

