
Performance of the nHCal for ePIC experiment based on Simulations

Alexander Godál1 (for the ePIC collaboration)
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ELECTRON-ION COLLIDER
• Approved particle accelerator planned to be built in the

next few years at Brookhaven National Laboratory
• Will repurpose a lot of infrastructure from the existing

Relativistic Heavy Ion Collider (RHIC)
• First collider to have both colliding beams

(electron and proton/ion) polarised
• Large range of center-of-mass energies:
→ from 20 GeV up to 140 GeV

PHYSICS GOALS

• Solve the proton spin puzzle

▷ how the constituent quarks and gluons and their in-
teractions contribute to the nucleon’s spin

• Produce precise 3D images of protons and nuclei

▷ extending simplistic models and broadening our un-
derstanding of gluon dynamics inside nucleons

• Study the dense nuclear medium

▷ looking for a steady state of saturation called colour-
glass-condensate

ePIC DETECTOR

Designed to combine many subsystems for tracking and vertexing, particle identification,
electromagnetic calorimetry and hadronic calorimetry

• Located at the Interaction Point 6, at the current location of the STAR detector
• Spanning a cylindrical volume with the length of ∼ 9.5 m and radius of ∼ 2.67 m
• Asymmetrical design to accommodate the difference in energies of the opposing colliding

beams
• Large coverage in pseudorapidity - even more extended by the far detectors

NEGATIVE HADRONIC CALORIMETER
Sampling calorimeter located in the electron direction, serving as a tail catcher for the
electromagnetic calorimeter in electron identification

ROLE

• Distinguish charged and neutral hadronic showers coming from jets originating from frag-
mentation of low Bjorken x partons

– high neutron efficiency and good shower separation required

• Identify muons from vector meson decays

DESIGN

• 10 alternating layers:

▷ non-magnetic steel 4 cm (absorber)
▷ plastic scintillator 4 mm (active medium) [segmented in 10×10 cm layers]

• Signal readout:

▷ Scintillator light guided by wavelength-shifting fibers
▷ Light collection managed by Silicon Photomultipliers (SiPM)

passive (steel) medium

plastic scintillator

z

JUSTIFICATION FOR THE nHCal
Many low-x physics topics through diffractive events require nHCAL and/or greatly benefit
over other channels

• Backed up by the H1 collaboration at HERA
→ they realised that the lack of backward HCal was detrimental for low-x studies

▷ [Nucl.Instrum.Meth.A 386 (1997) 397-408]
▷ [Nucl.Phys.B 497 (1997) 3-30]

• Diffractive J/ψ → µ+µ− photoproduction is a crucial physics goal promised by ePIC

▷ [Nucl.Phys.A 1026 (2022) 122447]

ELECTRON-PROTON

J/𝜔 → µµ, e + p, 18 ↑ 275GeV

Vincent Andrieux, UIUC

nHCal crucial to measurements below x = 10→3

Other detectors limited to x = 10→3

Necessary for one of the physics topics in EIC YR and promised by ePIC
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• nHCal crucial below x = 10−3

ELECTRON-ION

J/𝜔 → µµ, e + A, 20 ↑ 100GeV

Vincent Andrieux, UIUC

nHCal crucial to measurements below x = 10→2 in e + A

Other detectors limited to x = 10→2 in e + A

Necessary for one of the physics topics in EIC YR and promised by ePIC
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• nHCal crucial below x = 10−2

SINGLE NEUTRON SIMULATIONS
The following simulations were done to study the performance of nHCal measurements of
neutrons in terms of detection efficiency and position resolution

SETUP

• single neutron shot in Hcal_only geometry
• neutron energies of 1, 3, 5, and 10 GeV with θ = 150◦ and ϕ = 45◦

• each configuration consisting of 100 000 events

RECONSTRUCTION EFFICIENCY

↑ The ratio of reconstructed to generated neutrons
• Generally improves with higher energies
• Reaches sufficient values (∼ 95.8%) at 5 GeV
→ Chosen energy for the following plots

0 2 4 6 8 10
E [GeV]

20

30

40

50

60

70

80

90

100

E
ffi

ci
en

cy
 [%

]
ANGULAR RESOLUTIONS

↑ The difference of reconstructed and Monte Carlo angle
• In ideal scenario the width of the distribution should approach zero
• Also generally improves with higher energies
• Sharp peaks (more prevalent at lower energies) appear when all energy is deposited in

cluster with single tile
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SUMMARY
• Obtained neutron detection performance from simulations:

▷ efficiency > 95% for E≥ 5 GeV
▷ angular resolution improves with higher energies

• Negative Hadronic Calorimeter (nHCal) is critical for the ePIC detector as it enables pre-
cise studies at low-x

• Initial exclusion of such detector in the H1 experiment was later recognised as a significant
limitation of physics output on key topics

• Baseline design is still being finalised in order to accommodate all physics requirements
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