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Motoviation

Understanding the space-time structure of particle emitting source
using quantum-statistical BE-HBT correlations.

Investigate modifications in BEC strength by considering AB-like
effect and Coloubm interaction with HICs.
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Main Idea

The space-time geometry of the particle emitting source may be
explored by measuring BE or HBT correlation functions, which is
main source of momentum correlation for identical bosons.

In quantum mechanics, identical particles are genuinely
indistinguishable due to Heisenberg uncertainty principle.
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Bose-Einstein Correlations

Momentum correlation function of two identical particles, generally is:

C2(p1, p2) ≡
N2(p1, p2)

N1(p1)N1(p2)
, (1)

Using phase-space density to describe the correlation function of the
emitter S(x , p) as:

C2(p1, p2) = 1 + Re
S̃(q, p1)S̃

∗(q, p2)

S̃(0, p1)S̃∗(0, p2)
(2)

where S̃(q, p) denotes as Fourier transform of the source

with q ≡ p1 − p2, the two particle correlation func becomes:

C2(q,K ) = 1 +
|S̃(q,K )|2

|S̃(0,K )|2
≈ 1 + λ2

|S̃(q,K )|2

|S̃(0,K )|2
(3)
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Two- and Three-particle strengths

The correlation strength is defined by the fraction of the pions that
come from the core to contribute to the visible correlation function:

λ2 = f 2c , fc =
Ncore

Ncore + Nhalo
(4)

The presence of partially coherent pion production distorts λ2&λ3,
however two- and three-particle BEC func. at zero relative
momentum are in simple connection to the partially coherent fraction
(pc) of the fireball:

λ2 = f 2c ((1− pc)
2 + 2pc(1− pc)) (5)

λ3 = 2f 3c ((1−pc)
3+3pc(1−pc)

2)+3f 2c ((1−pc)
2+2pc(1−pc)) (6)
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Model Setup

The produced hadron gas flow can be described by the dynamical
system of equations as:

dp
dt

= ℏcα
Nch∑
j=1

q(r j − X )

r3
(7)

dX
dt

= V =
p
mγ

(8)

Where r =
√
(rj − X )2 & γ =

√
1− p2

m2

This model was solved numerically using Euler Method with time
iteration for pion mass =139.57, charge q = ±1,and using the natural
units (ℏ = c = 1).
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Phase-shift vs Time-shift

The time shift of TOF (∆t) is a result of the phase-shift (σ) after
scattering of the test particle during the flight towards the detector
due to the final state interactions with the cloud of charged particles.

Charge cloud has Nch in a 3-D Hubble flow with initial momentum pin
in random direction for the test particle.

From the simulation we measured the ∆t according to

∆t = tTOF(d)− t
(Nch=0)
TOF it is a Gaussian distribution with width σt .

From the fitting of Gassian distribution and determining the width we
can get the phase-shift as:

ϕ = k∆x =
p

ℏ
v∆t =

p2

ℏ
√
m2 + p2

∆t ⇒ σ =
p2

ℏ
√
m2 + p2

σt . (9)
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Results

From the simulation we get an example for particle trajectory of a
particle with initial momentum vector:
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Figure: Example particle trajectory of a particle with initial momentum
vector (0,0,pz) with pz = 300 MeV.
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Time shift

Time shift distribution
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Figure: Time shift distributions from the simulation for different initial
momentum values.
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distance
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Figure: The traveled distance by the investigated correlated particles with the
phase-shift distribution σ0, for Nch = 1000, R = 1.5 fm.
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effect of the Initial Momentum
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Figure: The dependency of the gaussian width and then the phase shift on the
initial momentum of the correlated particles.
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Correlations strength
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Figure: The intercept parameter λ2 as a
function of the initial transverse
momentum of the probe particle, for the
two scenarios: Nch = 500, R = 5 fm and
Nch = 1000, R = 1.5 fm.
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Figure: The intercept parameter λ3 as a
function of the initial transverse
momentum of the probe particle, for the
two scenarios: Nch = 500, R = 5 fm and
Nch = 1000, R = 1.5 fm.
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Effect of No of charged particle & Fireball radius
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Figure: Correlation strength parameters
versus charged particle multiplicity.
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Figure: Correlation strength parameters
versus fireball radius.
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Charged particle density
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Figure: Intercept parameter λ3 versus a charged particle density proxy.
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Conclusion

Changes in phases due to the Aharonov-Bohm effect, effectuated via
the Coulomb interaction, may cause distortion in quantum-statistical
correlations.

Phase changes are prominent at low particle momenta but diminish at
higher momenta.

The strength of correlation changes is influenced by charged particle
density, becoming significant at high densities.

Challenges and Practical Implications: Incorporating this effect in
Monte Carlo simulations is resource-intensive due to the Coulomb
interaction’s range and the long timescales required. However, it can
be accounted for in momentum correlation calculations via an
afterburner as proposed.
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Thank you!

Questions?
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