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Abstract
After rehadronization in heavy-ion collisions, hundreds of charged particles are produced. When measuring the correlation functions, we take into account that the produced hadrons
create a strong electromagnetic field around trajectories of the investigated pairs of identical pions. Although this may be seen as an Aharonov-Bohm effect, a more straightforward
explanation would be that the phase along the pair’s closed path is altered when one of the particles’ paths is altered by a phase, as compared to the interaction-free case, when
the path is a straight line, and momentum also does not change.This additional phase shift for an infinitesimal path element dx can be expressed as k · dx, where k = p/h̄ is the
momentum (or wavenumber) of the particle at that point. The alteration of the particles’ flight time reaching the detector can be connected to the phase shift of the particles, as
we discuss below.

Introduction
• The space-time geometry of the particle emitting source may be explored by mea-

suring BE or HBT correlation functions, which is main source of momentum cor-
relation for identical bosons.

• In quantum mechanics, identical particles are genuinely indistinguishable due to
Heisenberg uncertainty principle.

Figure 1: Aharonov–Bohm effect with a Hubble expanding source

Bose-Einstein Correlations

• Momentum correlation function of two identical particles, generally is:

C2(p1, p2) ≡
N2(p1, p2)

N1(p1)N1(p2)
, (1)

• Using phase-space density to describe the correlation function of the emitter S(x, p)
as:

C2(p1, p2) = 1 + Re
S̃(q, p1)S̃∗(q, p2)
S̃(0, p1)S̃∗(0, p2)

(2)

where S̃(q, p) denotes as Fourier transform of the source

• with q ≡ p1 − p2, the two particle correlation func becomes:

C2(q, K) = 1 + |S̃(q, K)|2

|S̃(0, K)|2
≈ 1 + λ2

|S̃(q, K)|2

|S̃(0, K)|2
(3)

Results

From the MC we get the time shift distribution as we can see in figure (2).
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Figure 2: Time shift distributions from the simulation for different initial
momentum values.

Two- and Three-particle strengths
• The correlation strength is defined by the fraction of the pions that come from the

core to contribute to the visible correlation function:

λ2 = f2
c , fc = Ncore

Ncore + Nhalo
(4)

• The presence of partially coherent pion production distorts λ2&λ3, however two-
and three-particle BEC func. at zero relative momentum are in simple connection
to the partially coherent fraction (pc) of the fireball:

λ2 = f2
c ((1 − pc)2 + 2pc(1 − pc)) (5)

λ3 = 2f3
c ((1 − pc)3 + 3pc(1 − pc)2) + 3f2

c ((1 − pc)2 + 2pc(1 − pc)) (6)

Model Setup

• The produced hadron gas flow can be described by the dynamical system of equa-
tions as:

dp

dt
= h̄cα

Nch∑
j=1

q(rj − X)
r3 (7)

dX

dt
= V = p

mγ
(8)

• Where r =
√

(rj − X)2 & γ =
√

1 − p2

m2

• This model was solved numerically using Euler Method with time iteration for pion
mass =139.57, charge q = ±1,and using the natural units (h̄ = c = 1).

Phase-shift from Time-shift
• The time shift of TOF (∆t) is a result of the phase-shift (σ) after scattering of the

test particle during the flight towards the detector due to the final state interactions
with the cloud of charged particles.

• Charge cloud has Nch in a 3-D Hubble flow with initial momentum pin in random
direction for the test particle.

• From the simulation we measured the ∆t according to ∆t = tTOF(d) − t
(Nch=0)
TOF

it is a Gaussian distribution with width σt.

• From the fitting of Gassian distribution and determining the width we can get the
phase-shift as:

ϕ = k∆x = p

h̄
v∆t = p2

h̄
√

m2 + p2
∆t ⇒ σ = p2

h̄
√

m2 + p2
σt. (9)

The Distance effect and Intial Momentum
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Figure 3: The dependency of the
gaussian width and then the phase shift

on the initial momentum of the
correlated particles
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Figure 4: The traveled distance
by the investigated correlated
particles with the phase-shift

distribution σ0, for Nch = 1000,
R = 1.5 fm.

Corrlation strength
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Figure 5: The intercept
parameter λ2 as a function of the
initial transverse momentum of
the probe particle, for the two
scenarios: Nch = 500, R = 5 fm

and Nch = 1000, R = 1.5 fm.
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Figure 6: The intercept
parameter λ3 as a function of the
initial transverse momentum of
the probe particle, for the two
scenarios: Nch = 500, R = 5 fm

and Nch = 1000, R = 1.5 fm.

Conclusion
• Changes in phases due to the Aharonov-Bohm effect, effectuated via the Coulomb

interaction, may cause distortion in quantum-statistical correlations.

• Phase changes are prominent at low particle momenta but diminish at higher
momenta and also at hight particle densities.

• Incorporating this effect in Monte Carlo simulations is resource-intensive due to
the Coulomb interaction’s range and the long timescales required. However, it
can be accounted for in momentum correlation calculations via an afterburner as
proposed.


