

Hadronic Showers in Geant4 11.2.cand{00,01}

G. Folger, D. Konstantinov, A. Ribon CERN EP-SFT

CERN EP-SFT Geant4 meeting, 26 November 2024

Main Changes in Hadronics in G4 11.3.cand00 vs. 11.2.ref09

hadronic/cross_sections

- G4ChargeExchangeXS : several improvements
 - Switched computations from level of isotopes to level of elements : code becomes several times faster, without loss of accuracy
 - Added protections against negative components of cross section and potential division by zero, which might happen only at extreme high energies
 - Fixed problem in pion cross sections according to the prescription of the original paper

Note : currently, this class is used only in the physics constructor **G4ChargeExchangePhysics** , which is used only in **QBBC** reference physics list

Main Changes in Hadronics in Cand01 vs. Cand00

- Updated hadronic datasets PhotonEvaporation6.1, RadioactiveDecay6.1
 - For PhotonEvaporation6.1 : corrections of the files: z72.a154, z81.a193, z92.a239
 - For RadioactiveDecay6.1 : several files have been corrected

Main Changes in Hadronics after Cand01

- Updated hadronic dataset RadioactiveDecay6.1.1
 - Minor fixes of 3 files : z7.a13, z77.a164, z77.a171
- Updated hadronic dataset *RadioactiveDecay6.1.2*
 - README_RDM : updated to clarify that the mean life is taken from ENSDFSTATE (the value in RadioactiveDecay is ignored)
- examples/extended/hadronic/FlukaCern
 - Skip rotation of the final-state particles from the assumed projectile direction, (0, 0, 1), to the original direction of the projectile this rotation is already done in *G4HadronicProcess::PostStepDolt*
 - This is expected to fix the discrepancy between Geant4 and Fluka-Cern regarding the leakage in the ATLAS test-beam set-ups, reported by Lorenzo Pezzotti

Crashes & Warnings

- No crashes
- No infinite loops
- No new warnings

Reproducibility

- OK in all cases
 - One violation seen only once in QGSP_BIC_HP_EMZ in Cand01
 - Under study, but difficult to isolate and investigate...
 - It is likely a rare violation, not seen before because of limited statistics

Pion- showers: FTFP_BERT

G4 11.2.ref09 G4 11.3.cand00 G4 11.3.cand01

Note : conventional Birks treatment (easier and no experimental h/e to fit !)

FTFP_BERT : Energy Response

FTFP_BERT : Energy Width

FTFP_BERT : Energy Resolution

FTFP_BERT : Longitudinal Shape

FTFP_BERT : Lateral Shape

11

Conclusions

- G4 11.3.cand{00, 01}
 - No crashes, no infinite loops, no new warnings
 - Reproducibility is fine in all cases
 - Except for one, single rare violation seen with QGSP_BIC_HP_EMZ
 - Hadron showers:
 - For all reference physics lists, the hadronic showers of 11.3.cand{00, 01} are similar to those of Ref09