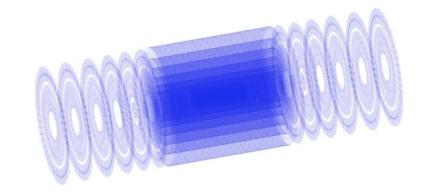
GEANT4 11.3 highlights

kernel modules

Gabriele Cosmo, CERN EP-SFT

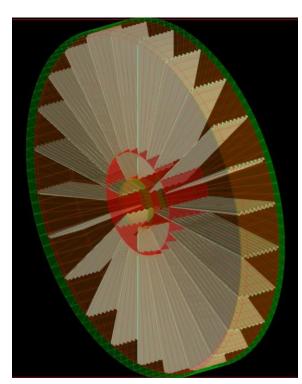
for the Geant4 Collaboration


Outline

- Features and fixes introduced in release 11.3
 - Kernel modules
 - EM Physics (see talk by V.Ivantchenko)
 - Hadronic physics (see talk by A.Ribon)
- > Detailed release notes:
 - https://cern.ch/geant4-data/ReleaseNotes/ReleaseNotes.11.3.html
- ➤ List of planned features for 2024:
 - https://cern.ch/geant4/planned-features-2024

Geometry

VecGeom


- Updated VecGeom library, VecGeom v1.2.10
 - Selection for enabling use made at configuration
 - https://gitlab.cern.ch/VecGeom/VecGeom/tree/v01.02.10
 - Added logger classes for warnings and printouts (contributed by Celeritas)
 - Bug fixes to Polycone, Trapezoid and Torus shapes
 - Fixes in CI settings and porting
- New 2.0.0 release candidate, VecGeom v2.0.0-rc3
 - https://gitlab.cern.ch/VecGeom/VecGeom/tree/v2.0.0-rc3
 - Simplified code; removed unused interfaces and backends (vector API, unused specialisations)
 - Targeting final release v2.0.0 with portable code across devices
- Surface Model geometry development
 - All common solids now supported; added BVH acceleration support; overlaps handling; mixed precision; actively working on optimisation

Geometry

Navigation, Volumes, Solids, Magnetic Field

- Geometry optimisation using multithreading
 - New option, reducing time spent for voxelisation over logical volumes of complex geometry setups by adopting multithreading/tasking
- Added new classes for field configuration
 - New UI commands to allow users to control parameters for field transportation and the accuracy of intersection of curved trajectories with volumes
- Revised implementation of G4GenericTrap
 - Now used in the implementation of the EMEC structure in ATLAS, under validation and providing ~19% speedup vs. original custom solid
- Improved/optimised implementation of GetCubicVolume() in Boolean solids

Materials, Particles & Analysis

Materials:

Extended diagnostics and output from material scanner

Particles:

- Added new class, G4ChargedUnknownParticle, similar to G4UnknownParticle for charged unknown particles
- Part of ATLAS and LHCb request to assign automatically ionisation and multiple scattering processes to charged primary particles with valid PDG code but not known to Geant4

Analysis:

Added support for accumulable collections in analysis module

Run, Parameterisations

Run:

- First implementation of task-based sub-event level parallelism: event split in sub-events, with automatic
 merging of the hits at the end of the event demonstrated in example runAndEvent/RE03
 - Added sub-event parallel mode as an option in G4RunManagerFactory and new UI command for allowing trajectory merging
 - Useful for splitting of large events, e.g. heavy-ion collisions
 - "Phase I": all tasks have the same physics processes and see the same detector geometry
- In "Phase II" (i.e. next year release): each task can have only the necessary physics processes and see limited detector geometry, needed for that particular task
 - Useful for heterogeneous simulation
- The introduction of sub-event parallelism does not change the threading model, and is optional

Parameterisations:

- New model of ionisation losses for e+/- ionisation channeling
- Added new process G4CoherentPairProduction for the simulation of coherent pair production by high energy gamma in an oriented crystal; using new channeling dataset accessed through G4CHANNELINGDATA environment variable

Visualization/Interfaces

- Qt6 now fully supported
 - Restored OpenGL as default backend for Qt6. Fixed open issues when using Qt6 with supported drivers
- Improved plotting with /vis/plot if TOOLS_USE_FREETYPE flag is set
 - Set GEANT4_USE_FREETYPE=ON in CMake
- Improved identification of scene tree models in visualisation
 - Now suppressing the scene tree if the number of touchables exceeds 10000 (equivalent to about 20 MB)
- Updated visualisation manager to correctly merge/handle asynchronous event merging

Data sets

- New data set versions:
 - G4EMLOW-8.6.1, G4PARTICLEXS-4.1, G4ENSDFSTATE-3.0, G4PhotonEvaporation-6.1, G4RadioactiveDecay-6.1.2, G4CHANNELLINGDATA-1.0
- New optional data sets:
 - -G4NUDEXLIB-1.0, G4URRPT-1.1

Configuration & Externals

Configuration/General

- Support running example build-and-run tests in XCode on macOS and added support for use of sanitizers with XCode
- Fixed spurious compilation warnings on gcc when LTO settings are enabled
- Removed configuration/use of no longer supported TiMemory profiling
- Bump minimum VecGeom version to v1.2.9; recommended v1.2.10 or higher
- CMake 3.16 is the minimum version required to build Geant4

PTL

Synchronised with version PTL-3.0.1. Retaining patches for Geant4 source layout in configuration

Extended & Advanced examples

- The example RE03 in extended/runAndEvent has been extended to demonstrate the ability to run in sub-event parallel mode
- New extended/exoticphysics/channeling examples category: created ch0 example out of the original example and added new set of examples
 - **ch1**: an easy demonstration of the minimum requirements necessary to integrate the G4ChannelingFastSimModel and the G4BaierKatkov model into a project in order to simulate the physics of channeling and channeling radiation/coherent bremsstrahlung
 - **ch2**: an enhanced version of ch1, providing the user with the full functionality of both demonstrated models, with parameters set up via a macro
 - **ch3**: demonstrating the minimum requirements necessary to integrate the G4CoherentPairProduction process into a project, along with the demonstrated models, to simulate the physics of electromagnetic showers in an oriented crystal
- New dna category for Geant4-DNA advanced examples, including:
 - moleculardna example, moved from extended category
 - New cellularPhantom application, showing how to simulate the irradiation of a 3D voxel phantom containing biological cells, created from a confocal microscopy 24-bit RGB image
 - Updated dsbandrepair example, now using EmParameters to control chemistry time step model

Platforms for 11.3

- Linux Alma9/RedHat Linux Enterprise 9
 - gcc-11.5 to 14.2, 64 bits (Intel or AMD)
- macOS 15 Sequoia
 - Apple Clang-16 (XCode 16.x), 64 bits (Intel or Apple Silicon)
- Windows 11
 - Visual C++ 14.4 (Visual Studio 2022), 64 bits
- ❖ Also tested (sequential/MT, 64 bits):
 - Linux CentOS9/alma9, icx-2024.2, LLVM/clang-16/17/19
 - Linux Ubuntu 22/24, gcc-11.4/13.2
 - macOS 13 Ventura/14 Sonoma, Apple Clang-15
 - Windows 10, Visual C++ 14.36 (Visual Studio 2022)

Thanks!