

Beam Halo Measurements in Run2 and Run3 - Status and Prospects

C.E. Montanari, M. Giovannozzi, P. Hermes, M. Rakic, S. Redaelli

HL-LHC Beam Halo Monitor Review - 18 December 2024

Outline

- Introduction: LHC collimation and the halo problem
- Beam Halo Measurement methodology
 - Collimator scraping and calibrated BLM signal
 - Bunch-by-bunch visualization via fastBCT
- Beam Halo Recent observations
 - Recall of Run2 and Run3
 - Correlation with e-cloud
 - Slow repopulation
 - Influence from BB effects and observed differences with BBCW
- Ongoing modelling efforts
 - Global diffusive models
 - Chaos indicators for single-particle tracking
 - Investigations at injection

The LHC collimator system

Multi-stage system

- Betatron cleaning in IR7
- Momentum cleaning in IR3
- Local protection of triplets and experiments
- Critical for machine protection and background mitigation

Multiple challenges for HL-LHC intensities

- Doubling of the bunch population
- Total stored energy of 678MJ per beam
- Higher impedance expected
- No hollow electron lenses to mitigate the halo

Overview of the LHC collimation system

The LHC collimator system

- Different collimation types for different purposes
 - Primary collimators (TCP) closest to main beam
 - Secondary and Tertiary collimators remove particle showers, protect IPs, reduce background
- Hierarchy designed around optics, aligned to beam centers, validated with dedicated runs

The Beam Halo Problem

Assuming nominal σ with ϵ_N =3.5µm rad

- Transverse beam halo: particle population above 3 σ_N
- Measured since LHC start: heavily populated halo, up to 5% total intensity [ref.]
 - Risk for loss spikes, dumps, damage with orbit jitters
 - Threatening fast failure scenarios for HL if scales
 - Mitigation HW unavailable

Halo measurement via collimator scraping

-0.240

-0.240

-0.240 0

-0.240

14:50

14:45

-0.240 [₁₀₁₄]

%

- Precise indirect destructive measurement • via BLM/fBCT losses:
 - Perform BBA •
 - Move TCP inwards •
 - Measure induced losses ٠
 - Integrate measured losses to reconstruct the ٠ scraped beam halo

BCT signal. Intensity drops as

TCPs are moved inwards

14:20

Intensity

Collimator position

14:25

14:35

Time [h:m]

14:40

Delta in signal used to

reconstruct halo intensity

14:30

B1H Scraping Measurement 2022-10-06

BLM calibrated signal for halo reconstruction

- Leverage on BLMs large dynamic range
- Calibration of Gy/s signal on dedicated runs:
 - Induce high scraping losses, compare BCT intensity drop with BLM response
 - Construct Response Matrix
 - Apply inverse Response Matrix in nominal fills
- Further details here

Visualizing the beam halo bunch-by-bunch

he University of Manchester

Recall of Run2 Halo measurements

			Final collimator position [ơ] Halo content [%]				Halo content [%] at			
	Fill number	No. of Bunches	B1H	B1V	B2H	B2V	B1H	B1V	B2H	B2V
10/05/2016	4910	313	4.1	3.9	4.0	4.1				
10/05/2010		010	0.1	1.2	0.7	1.0				
19/07/2016	5105	2076	3.8	3.1	3.1	3.4				
13/01/2010			0.0	1./	0.9	0.2				
15/06/2017	5834	900	3.0	3.0	3.1	3.1	4.6			1.4
			4.0	2.5	2.1	1.4				
19/06/2017	5848	1741	8.7	/	8.1	/				
00/00/0047			3.2	1	/	3.1				
20/06/2017	5849	2029	5.3	/	1	1.3				
00/00/2017	6052	2550	3.7	3.3	3.5	2.8				20
00/00/2017	0052	2550	3.0	5.2	1.0	5.5				2.0
12/00/2017	6194	224	2.3	2.4	2.1	2.2	6.2	1.5	01	1.8
13/09/2017	0154		29.5	7.9	6.8	19.6			0.1	1.0
25/00/2018	7221	2550	/	3.0	/	3.2		5.6		
23/03/2010	, 22 1	2550	/	5.6	/	0.6				
06/10/2018	7264	2550	2.9	3.1	3.3	2.8	1.5			1.0
00/10/2010			2.4	0.6	1.0	2.1				
30/10/2018	7392	300	3.5	2.0	2.9	2.0		0.7		0.2
			10.0	9.4	5.7	2.5				

Recall of Run3 Halo measurements

06/10/2022 25/10/2022 12/11/2022 09/06/2024 09/06/2024 29/06/2024 12/08/2024 22/08/2024

			Final collimator position [σ]				Halo content [%] at			
			Halo content [%]			3.0 [σ]				
Fill number	Stage	No. of Bunches	B1H	B1V	B2H	B2V	B1H	B1V	B2H	B2V
8233 EOF	200	3.0	3.1	3.2	3.1	0.3	0.2	0.3	0.6	
	EOF	200	0.4	0.2	0.3	0.6	0.5	0.2	0.5	0.0
0010	0040 505	1200	3.1	3.5	3.0	3.6	1.2		0.0	
EOF	1200	1.2	0.6	0.3	1.4	1.2		0.2		
0207	0007 FOF	2442	3.5	3.7	3.7	3.4				
8387 EOF	2402	0.9	0.3	0.1	0.7	1				
0754	9754 INJ	624	2.8	2.8	2.7	2.7	3.3	1.5	1.0	1.0
9754			4.7	2.8	4.0	4.5			1.0	1.0
9756 INJ	624	2.8	2.9	2.7	2.7	24	17	2.0	2.0	
		5.0	2.4	3.7	3.9	3.0	1.7	2.0	2.0	
9808 EOF	1238	2.6	/	2.6	/	0.0	0.3			
		2.6	/	1.1	/	0.8				
9996 EOF	0054	3.1	3.2	3.2	3.5					
	EOF	2351	0.7	0.1	0.4	0.2	1			
10045 INJ	INU	0/	/	1.7	/	1.5		1.0		1.0
	90	1	26.5	/	31.5	1	1.3		1.3	

he University of Manchester

Correlation with initial emittance

- Can beam halo population be related to initial beam emittance?
- Spurious correlations have been observed, but no systematic relations so far
- More details available here

Electron cloud and beam halo

- Recent halo measurements performed at Flat Top (@MD9325)
- Comparison of halo population intra-train between different train typologies
 - 25ns: standard train
 - BCMS: 25ns batch compression, merging, and splitting train
 - 8b4e: train designed to minimize electron cloud presence
- Strong correlation between halo
 population and electron cloud intensity

Collimator scraping @ Flat Top

Courtesy of M. Rakic

A slow repopulation

- A collimator scraping removes the beam halo
- Repeated measurements in same fill suggest long repopulation times (order of hours)
- Huge challenge for making comparable measurements!

Halo distribution and wire compensator impact

• Two EOF scrapings:

- Fill 9808: wire kept **OFF 1h before** scraping, **10 min between** OFF/ON,
- Fill 9996: wire kept **ON 5.5h before** scraping, **10 min between** ON/OFF

On nominal settings, no visible impact of wires on halo population between

Fill	No. bunches	Scraping no.	Wire state	B1H	B1V	B2H	B2V
9808	1238	1	OFF	0.8	/	0.3	/
	1250	2	ON	0.15	/	< 0.1	/
9996	2351	1	ON	0.7	0.1	0.4	0.2
		2	OFF	0.15	0.01	/	/

Table: Measured halo content in [%] at 3σ .

Need for a comparative study with wires kept ON/OFF equal amount of time

BB-dominated configurations show more visible effects (in later slides)

Open investigation - halo induced at injection

- Slow repopulation times suggest main halo source may come from injection
- This checks out with observed improvements
 after LIU
- Overview on the topic presented by <u>S.</u> <u>Kostoglou at recent JAPW</u>
- Modeling of beam tails/halo by means of qgaussian distributions
- Degradations in beam-halo populations can be traced back up to the PS!
- Main improvements achieved with last iteration of BCMS
- Still an open chalenge relating beam profiles to beam halo scraping measurements!

Comparison with SPS halo population

- Comparison of q-value evolution from SPS measurement to LHC at flat bottom
- Clear increase in q-value along the SPS-LHC transfer line
- Biggest relative increase for the case BCMS q-1.0 (most scraped at SPS level)

Courtesy of M. Rakic

Investigating scale-laws: diffusion models

- Natural extension of established Dynamic Aperture scale-laws [<u>A. Bazzani et al.</u>] and local diffusion measurements performed in the LHC [<u>A. Gorzawski et al.</u>]
- Description of beam distribution as solution of a Fokker-Plank equation

$$\frac{\partial \rho(I,t)}{\partial t} = \frac{1}{2} \frac{\partial}{\partial I} D(I) \frac{\partial}{\partial I} \rho(I,t)$$

where perturbations are summarized by the diffusion coefficient with functional form:

$$D(I) \propto \exp\left[-2\left(\frac{I_*}{I}\right)^{\frac{1}{2\kappa}}\right]$$

- *I* is the action variable
 - $\circ \sigma^2$ evaluated with measured beam emittance
- Equation valid only for the beam-halo!
- Beam core expected to follow a separate regime (mostly due to Beam-beam head-on effects)

Observable from our diffusive model

BEAM-HALO POPULATION

$$\rho_{\rm eq}\left(I, I_{\rm a}\right) = \alpha\left(I_{\rm a}\right) \int_{I}^{I_{\rm a}} \frac{\mathrm{d}x}{D(x)}$$

Measured by means of Collimator Scrapings

BEAM-LOSS SIGNAL AT DIFFERENT AMPLITUDES

$$J_{\rm eq}\left(I_{\rm a}\right) = \left. D\left(I_{\rm a}\right) \frac{\partial \rho_{\rm eq}(I)}{\partial I} \right|_{\left(I_{\rm a}\right)}$$

Measured while retracting the collimator

- Outward movements or alternation of outward and inward movements **with pauses in between**;
- J_{eq}; is the stabilized BLM beam-loss signal

Measurement performed at the end of Beam-Beam wire compensation MD in 2022

- Special configuration dominated by BB effects
- Wire compensation available in B2

An example of diffusion reconstruction

Overall great fit reconstruction

CÉRN

- Able to relate both beam-halo and equilibrium beam loss signal
- Lower diffusion reconstructed with Beam-Beam wire compensators on

Initial analysis of B1 presented at IPAC'23

.

• Complete work to be published on EPJ Plus @ C.E. Montanari et al. "Measurement of the nonlinear diffusion of the proton beam halo at the CERN LHC"

Enhancing single-particle tracking: Chaos Indicators

 $\mathbf{x}(t) + \boldsymbol{\delta}(t)$

 $\mathbf{x}(t)$

 $\|\boldsymbol{\delta}(0)\|$

Chaos: sensitivity of a particle orbit to . initial perturbations

- Performance studies based on chaos • have been performed in the past with, e.g., the Fast Lyapunov Indicator (FLI)
- We are studying applications of more • advanced chaos indicators
- Implementation (CPU/GPU) on Xsuite under the package Xnlbd

Example of FLI evaluation on HL-LHC lattice

- Lattice considered with and without Beam-Beam effects
- Different chaos topology with BB weak-strong
 - Thin chaotic border and resonance-like lines
 without BB
 - Large regions of chaos appearing with BB longrange;
- Light chaos can be observed up to the core region of the beam due to head-on BB;
- Chaos topology reflects interplay of nonlinear contributions (beam-beam, longitudinal motion, etc.)
- Ongoing work: connect observed chaos timescales to diffusion presence/halo population

Novel halo depletion approach under study: halo cleaning via AC magnets $Q_x = 62.28$,

- Island trapping & transport could be a solution to halo cleaning
- Adiabatic changes ideally via AC multipoles
- Theoretical approach by F. Capoani et al.
- Initial simulation attempts with LHC AC dipoles under study by D. Veres

• For more information!

Conclusions and outlook

- Influencing factors on halo population
 - E-cloud effects
 - Observed clear correlation between e-cloud and halo population
 - Long-Range Beam-Beam (LRBB) wire compensators
 - Impact on halo population is unclear
 - Requires studies with extended configuration times for halo relaxation and re-population
 - Better observations achieved on BB-dominated settings
- Halo evolution across LHC stages
 - Halo increases from SPS to LHC
 - Energy ramp in the LHC does not appear to be the main driver of halo re-population

Ongoing and future efforts

- Relating beam profile measurements to observed beam halo measurements
- Developing diffusive models to predict and extrapolate long-term halo behavior
- Enhancing insights from single-particle tracking simulations using chaos indicators
- Exploration of alternative depletion methods based on AC magnets ongoing!

Thank you!

