

Beam Synchrotron Radiation Halo (BSRH) monitor: Implementation during LS3

F. Roncarolo

With precious input from: W. Andreazza, E. Bravin, S. Burger, D. Butti, T. Lefevre, S. Mazzoni, C. Pasquino, J. Pucek, G. Trad, R. Veness et al.

HL-LHC Beam Halo Monitor Review, 18-Dec-2024

Contents

- Recall of present BSRs implementation
- BSR for beam halo (BSRH)
 - Pre-LS3 studies, achievements, plans
 - Possible LS3 implementations and dependencies
- Conclusions / Outlook / General Considerations

Present BSRs implementation

Optical Table Below Beam Pipe

Schematic Layout

1 Beam Synchrotron Radiation Halo (BSRH) monitor (coronograph layout) system @ BSRTM 5L4 (Beam 2) , all details in previous talk by J.P.

Cad Drawing

Present BSRs implementation

 Almost for every intervention the table below beam pipe must be 'extracted' via rails on passage area

Present BSRs implementation

- 2 (B1, B2) x BSRTM extraction systems
 - SR from Undulators and D3 dipoles. Layout and sha
 - Operational, evolved since LHC startup. Today serving transverse beam size (BSRT) and longitudinal (Abort Gap - BSRA, Longitudinal Density - BSRL) monitors

B1

BSRTN

BSRTMB

D3

RF

- 1 (B1) x BSRTMB extraction system
 - SR from D4
 - New extraction mirror design, movable with beam energy, see next slide

Pre-LS3 Development Phase

What is already designed (completed), installed, validated

BSRH prototype Beam2 @ BSRTM. Two MDs 2024, all details in previous talk

BSRTMB (Second SR Source) - HL-LHC baseline:

- Completed design, RF studies, and lab measurements
- Installed B1 system with movable mirror for aperture/impedance tests
 - Successfully integrated with LHC operations and interlocks
 - Confirmed no RF heating issues via <u>temperature monitoring</u>
- Coated mirror installed B1, for 2025 beam tests
- Infrastructure/integration:
 - Cables and fibers ordered for both beams
 - Space reserved for B1 and B2
 - Vacuum integration design ~complete
 - Schottky monitors (BQS) B1 and B2 swap to optimize future BSRTMB B2 upstream pipe aperture
 - D4-BSRTMB enlarged chambers in procurement

Movable mirror to optimize light collection at flat top and reduce effect of diffraction from edge

Pre-LS3 Development Phase

What is planned and expected to be implemented before LS3

BSRH prototype Beam2 studies:

- systematic studies (2025: possible in parallel to BSRT), in MDs and normal operation.
- propose / test simplified version (e.g. apodized occulter)

2025 BSRTMB B1 Testing Plan:

- Light collection efficiency validation (Q1-Q2)
- Parasitic SR impact assessment from upstream magnets (Q2)
- BSRTMB-UA optical line
 - ZEMAX simulations (by Q2 2025)
 - complete (ongoing) integration (by 2026), e.g. to allocate space for BSR optics as close as possible to UA wall

LS3 Implementation Phase **Context Recap**

Current Setup:

- Located below beam pipe at BSRTM locations
- Used for multiple measurements:
 - Transverse (BSRT)
 - Longitudinal (BSRA abort gap monitor, BSRL -٠ density monitor)
 - R&D and prototype testing (BSRA, BSRI, BSRS)

Key Challenges:

- Tables are 'overcrowded', with SR shared among detectors via splitters/mirrors
- Access difficulties maintenance
- Radiation concerns for detectors and electronics in Run3, expected to worsen in Run4

	2024 SR Sharing Setup		
Instrument	B1 Splitting Ratio	B2 Splitting Ratio	
BSRT (Synchrotron radiation telescope)	0.35 (or 0.70 if BSRI splitter removed)	0.70	
BSRA and BSRAN (Abort gap monitor)	0.15	0.15	
BSRL (Longitudinal density monitor)	0.15	0.15	
BSRI (Synchrotron radiation interferometer)	0.35	N/A (R&D on B1 only)	
BSRH (Halo monitor)	N/A	0.7 (redirects BSRT light)	
BSRS (Slit scanner)	0.35 (redirects BSRI light)	N/A (R&D on B1 only)	

LS3 Implementation Phase

Option	Advantages	Disadvantages	Dependencies
1-BSRTMB with RA→UA Optical Lines	 Higher light collection Less system interdependency Redundant diagnostics Immunity to radiation Future-proof for LS4 (e.g. Undulator option) 	 More systems to maintain, including +2 viewports Longer outside vacuum (at optical line (see note** on the side) SR only above xx TeV (no injection) 	 Optics validation (Zemax simulations) (Q1-2 2025) UA integration
2-BSRTMB without Optical Line	 Shorter outside vacuum optical line 	 Difficult access More shielding needed Higher total cost 	 Budget for shielding tbc
3-Upgrade Existing BSRT	 maintenance of 2 systems only 	 Crowded tables, difficult access BSRA-BSRT- BSRL systems intercedences Radiation exposure 	 RF impedance of present BSRTM with HL-LHC beam parameters to be re-checked

Option 1

^{**} at least 8m to go to UA , detailed optics tbc

All options compatible coronagraph or other (simpler) SR based beam halo monitor. This can include

- More standard 'occulting' imaging telescope. No need for Lyot stops and related re-imaging present in coronagraph
- HDR camera: can re-iterate on ultimate performances reach (update survey made many years ago)
- Slit Scanner

LS3 Implementation Phase

About **non confirmed plan and open items requiring resolution/decision** (picking from previous slide and <u>previous presentation</u>), focusing on Option1:

Technical challenges:

- Ultimate reach of SR based BH monitor
- Bringing system to be operational

Resource gaps

HL-LHC GRAD : needed at least till end of commissioning Run4

Approval/coordination needs,

 Big efforts in 2024 to include all possible options in the planning. See also next slide. All should be ~clear including support from integration, cabling, vacuum and other groups/teams/units.

From PLAN Tool

Activity 12854	BSRT Upgrade F activities for HL LHC SY-BI (S	EDERICO RONCAROLO SY-BI-PM)	3. HL-LHC project HL-13
DOCUMENTS			
Туре	Description	Status	Information
ServiceNow	Cable installation, number of cab 34, lenght: 3400, LHC, LS3	oles: In progress	<u>Open</u>
ServiceNow	[HL-LHC] Fiber Optics installatio LHC - LS3	n: In progress	<u>Open</u>
EDMS	Installation of a Compact Imagin System on BSRTMB.5L4.B1 De	g Approval vice Accepted	<u>Open</u>
EDMS	HL-SRR - Beam Synchrotron Radiation Telescope (BSRT)	Approved	<u>Open</u>

11

Post-LS3 Phase

Here: **best estimate of the scenario**, always focusing on Option 1 (but most of this applies to any BSRH option). Based on pre-LS3 plan execution.

- Features/capabilities that
 - Will be available after LS3: Enhanced BSR-based halo monitor system with continuous relative halo integral monitoring. Aim at basic OP GUI.
 - Will need to be developed/implemented after LS3: Detailed performance characterization with HL-LHC beams and comprehensive reliability validation
- Expected timeline for transition from expert to operational mode
 - 1 year after LS3
- Known risks related to schedule and performance
 - risks: ultimate reach in terms of sensitivity and relative/absolute accuracy dependency on technical choices, implementation, learning curves
 - About schedule: what proposed = compatible with HL-LHC master schedule, tbc 2025

Budget (and Other General) Considerations

Budget status:

- Cost estimates for development and implementation phase vs available budget
 - Present budget ok. If Option 2: possible risk is additional radiation shielding
- Funding gaps to be addressed ?
 - For ensuring GRAD till after LS3 ?
- Long-term budget considerations. Maintenance and operational costs, including manpower:
 - General (also for beam profile monitoring via BSR):
 - Need dedicated staff member for BSRs (currently vacant; Internal Mobility or LD position planned for 2026) + graduate student
 - Maintain adequate technical support from SY-PM team for ongoing maintenance and operations
 - Require expert SY-BI-SW staff support due to complex BSRs control architecture
 - If Option1: +2 systems to maintain, may need to re-allocate or add manpower
- Identify and anticipate potential future upgrade requirements:
 - Radiation potentially an issue for electronics and detectors left in the RAs (tbc)
 - New undulator ? (considered as option years ago, not in any plan now)

Outlook / Conclusions

- Present BSRH B2 prototype installed on optical table below BSRTM, with all others BSRs
- Present reach (e.g. absolute and relative resolution in measuring beam halo) discussed in previous talk
- 3 options presented for a BSR@HL-LHC with pro/cons/open questions
- 2025 fundamental to test present BSRH during physics + MDs and confirm optical line is a viable solution (optics simulations, lab tests)
- Second SR extraction systems: completing integration studies + keeping enlarged vacuum chambers in VSC procurement looks to be best (only?) option for not loosing LS3 implementation opportunity

