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Summary

Presentations focus: Evaluate results and benefits of
carbon nanotube (CNT) wires for beam halo monitoring

Key properties of Carbon Nanotubes
Practical considerations

Potential operational impact
Thermal studies

Quenching studies
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Intercepted material for gaseous and solid devices

Vacuu, o and e e s =

SEM wire (30 um tungsten wire)

100
BTV screen (1 mm of SiO,)
Single-walled nano-tube wire with same
breaking load as existing WS wires LIU-BWS (30 um carbon wire)
10

BGC (5mm of Ne @ 2x10-% mbar
( Q ) Smallest in literature (7 um beryllium wire)

BGV (2m of Ne @ 2x10-8 mbar)

Molecular mass of interceptor
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Matter particles intercepted by the beam (mol.m-?)
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Key properties of Carbon Nanotubes

Allotropic form of carbon. Graphene sheet
Graphene sheet coiled in a
specific direction.

One or several walls (SWCNT —
MWCNT)

* Long and hollow nanometric
structure Figure 1. Carbon nanotube structure

Carbon nanotube (CNT)

N

Figure 2. SEM image of our Dexmat

CNT structure

Exceptional properties

CNT CNT wire Carbon fiber Stainless steel
Density [g/cm?] 0.8-1.4 0.8 — 4 glcm® 1.7-2.5 7.7-8
Mechanical Tensile strength [GPa] 11-63 1-3 2-7 0.5-1.6
properties v, ung modulus [GPa] 1000 200-800 230-600 190-210
Thermal conductivity [W/m k] 3000 600-800 5-15 16-30
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Practical considerations

(1) (2)

High variability of performance.

+  Each batch of wires needs to be tested

on its own to ensure its characteristics.  80- Drameter |
Gaussian fit
‘f 60 —
; : S

- Few available suppliers. % a0 il
- Required postprocessing. 0 —tbah A S
0 02 04 06 0.8 10 02 04 06 038 1

l Wire axis [mm] Wire axis [mm]
Expected Characte”s“cs after treatment _Figure 3. Optical n'_nicroscopip imgges of CNT wire samples after irradiation. Profile of the deformation after
image treatment with Gaussian fit (3)

. No direct relation with the dose deposited
Diameter(z) — 8 um

Obvious change of shape =-p Residualiron particles melted

Density (p)— 1 g/cm3
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Potential operational impact

- Capable of reading full intensity and energy of SPS beam.

« Signal decrease compared to other wires.

0.7
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- Noise increase compared to other materials & |-«
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Figure 4. Summary of integral signals and beam sizes for scans with CF and MBPT2 vertical position mm)

CNT wires at 26 GeV (3)
Figure 5. Example of a signal acquired using CNT wire at PSI compared to

T . molybdenum wire. Provided by M. Sapinski (PSI
‘ Hilumi Y Y M. Sapinsid (PSD
HL-LHC PROJECT

Gerard Aliana Cervera | Low Density Wires: Development for beam halo monitoring - status and plans




2024

Thermal studies — Comparison with CF

Thin target detectors temperature equation
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Figure 7. Temperature evolution of 34 pm CF and CNT wire at CF tiel
experimental beam limits in the SPS. Current expected 8 um CNT wire Figure 6. Sublimation conditions in a WS (4)

temperature evolution under the same conditions.
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Maximum temperature after scannin
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Thermal studies - Wire heating in SPS

Simulation conditions

Gaussian beam
Energy — 450 GeV

Intensity — 5,7e13

Scanning speed — 15 m/s

Temperature limits — 1500
degrees

Beam size of 1 mm



2024

Beam Halo Monitoring approach to 3.5¢

Stationary wire Scanning wire

Gaussian Beam Intensity Along the x-axis Gaussian Beam Intensity Along the x-axis with Wire Scanner Movement
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Thermal studies — Current wire in the BHM (3.50)

Beam size Stationary wire Scanning wire

Temperature Evolution Temperature during LHC Scan
1600 F — Max Temperature = 1592.181K = Temperature In
380 F — Temperature Out (Max = 383.869K)
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Thermal studies — Physical limits

Simulation Characteristics

Laook Temperature Evolution = Energy of 7 TeV — Intensity of 5.7e14

—— Max Temperature = 1372,21K

1200k Limitations

< 1000 «  Carbon atoms being knocked out have been
g neglected.
g 800+
N . .
K «  Wire defects have not been considered

600

Wire characteristics
400
(I] 560 lOIOO 15I00 20|00 25I00 30I00 ‘ 001 IJ.m Of dlameter "
Time (us)

+  Density of 0,8 g/cm3
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Inelastic collisions studies

lel0o

Inel. Col. (N)

Highest possible density for each diameter below 4e8
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Simulation conditions
_ - Energy — 6,5 TeV
Quenching
area
* Intensity — 5,7el14
Safe area « Scanning speed — 1 m/s
*  Quench limit — 4e8

©)
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Conclusions

CNT-based Beam Wire Scanners (BWS) could enable precise and reliable monitoring of
the beam halo, even at high intensities and energies.

=  The low-density nature and small diameters of CNT wires reduce beam interaction, preserving beam quality.
= CNT wires exhibit improved properties over the current Carbon Fiber wire.

Streamlined integration with the next generation of linear beam wire scanner.

State-of-the-art advancements driven by active R&D, with key contributions from our
collaborations with leading partners
= 20-21 June 2023 Workshop - Low density materials for Beam Instrumentation

Further testing and characterization is required to ensure an adequate performance.

Concerning expected accuracy, contrast, signal levels, a BH monitor via wires needs
more studies and simulations. Basic information can be inferred from standard BWS are:
=  Present BWS flying at 1m/s -> achievable contrast in the range 1le-3 to 1le-2
= 1D profile only (unless tomoscopy via multiple BWS can be implemented)
= Bunch per bunch possibility (may need to be integrated over many turns)
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Thank you for your attention

Any questions?
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Wire-scanners (WS)
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Wire scanners challenges

'Wire degradation

Today, the ageing of Carbon Fiber wires is a limitation

0.5 mm away from the
beam impact location

Figure 7. Pristine 34 um Carbon Fiber (CF) before irradiation [3]

Future challenges of intercepting devices

Machines SPS LHC FCC
Beam energy 450 GeV 7 TeV 50 TeV

Beam size 2mm 200 pm 20 pm

Max intens |ty (Np) ~5.1018 ~3.1014 ~1.10% Figure 9. Future Circular Collider project representation
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CNT manufacturing

CNT manufacturing methodologies

. _ Types of chemical vapor deposition for our purpose:
Electric-arc discharge

+ Thermal CVD (TCVD)
Laser ablation » Plasma-enhanced CVD (PECVD)
* Floating Catalyst CVD (FCCVD)
« Catalyst-Supported CVD (Cat-CVD)
» Davide Mattia — University of Bath

Chemical Vapor Deposition (CVD) —>

Preheating Zone | Reaction Zone
* Photo-Thermal CVD
— s, |
: | Gases
Boat CNTs Outlet
Formation

H 1 f

» Y

Tubular Furnace

Carbon

Source

Inlet (C,H,)

Figure 10. Chemical Vapor Deposition (CVD) schematic

Figure 11. Ultra-long CNT forest created by CVD [7]
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CNT wire manufacturing

CNT rope manufacturing methodologies [7]

Wet spinning Dry spinning (solid-state)
Direct dry spinning
from CNT furnace w \ 200 um
DexMat Wet spinning c -
(©) Acid dispersion
CNT powder * —> i N oond
™ , Spinneret 9 pasvier
\}

==
125 l : : /
Surfactant dispersion \\\ P

=====—_ Meijo Nano Carbon EC-Y Coagulation bath \\\

Figure 12. Wet spinning procedure schematics Figure 13. Dry spinning SS procedure schematics

Dry spinning from a CNT forest

Dry spinning by draw twist
process from CNT forest

Taiyo Nippon Sanso
Hamamatsu Carbonics

\»—= e —
Figure 14. Dri spinning from a forest procedure schematics
‘ HL-LHC PROJECT

Figure 15. Dry spinning from a CNT forest
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Proof of concept

Untreated wire

Treatment applied

12 h nitric bath (2.8 M concentration) at 125 degrees.
Neutralisation of the acid and dry overnight

Calcium (Ca)

Raman Spectroscopy

3000 — (1) Treated (Smoothed)

— (2) Untreated (Smoothed)

Iron (Fe)

2500

2000

Treated wire
1500

1000

Relative Intensity (Normalized)
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Calcium (ca)

1250 1500 1750 2000 2250 2500 2750
Wavelength

Figure 17. Raman spectroscopy result from both wires

Iron (Fe)

i

Figure 16. Treatment done at University of Bath

: H . L ) Figure 18. EdX and SEM images of both wires, treated and untreated
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