

FORMOSA

Matthew Citron for the FORMOSA collaboration

Why millicharged particles at the LHC?

<u>arXiv:1511.01122</u>

M. Citron mcitron@ucdavis.edu

experiment at the LHC

Detector idea sector idea ngle provenside sector in angon cintility of sectors millicharged particles IP, within a small time window (15 ns)

80 cm bar pf plastic scintillator (BC 408) + PMT (HPK R7725)

rray

Use scintillator bar array to detect (very) small ionisation from low CMS charged particles on! Expected signal few scintillation ed, photons in multiple layers Each bar + PMT must be capable of ieV] detecting a single scintillation photon **Demonstrator** Run 3 milliQan Control backgrounds: signal in each detector layer within small (~15 ns) time **Scintillator** window and that points towards the LHC bar IP 1769 Mean 1 956 8.824 Std Dev 100 M. Citron m

Proof of principle from milliQan demonstrator

- **First search** for millicharged particles at a hadron collider with new sensitivity
- Quantitative understanding of backgrounds and detector performance

→ Used this to guide future detectors!

- A demonstrator experiment installed in the CMS cavern during LHC Run 2 ran very successfully
- Used for range of studies to prove feasibility of full detector: alignment, calibrations, background measurements

FORMOSA

- <u>FORMOSA</u>: detector design outlined in FPF white paper: **20x20x4 array** of plastic scintillator bars (EJ-200) coupled to Hamamatsu 7725 PMTs
- Proton brem. production in far forward region could increase production by up to an additional 3 OOM below 1 GeV!

FORMOSA design in <u>FPF paper</u>

- World leading sensitivity across wide range of masses!
- New challenge: forward region location gives rise to a new background: "afterpulsing" from beam muons (muon flux ~1/cm²/s)
 → installed demonstrator to prove feasibility

FORMOA prototype

- A small-scale version of the full FORMOSA detector was installed behind FASER during YETS 2023 (2x2x4 bars + veto panels)
- Goal: validate DAQ strategy, measure backgrounds and prove search for mcps is feasible in the forward region

Construction timeline

- Used previous experience to build and install detector, structure, DAQ,... in just ~6 months
- Construction carried out entirely by UGs
- Detector collected data throughout 2024 running and will soon upgrade with hermetic veto panels in YETS

REU student Noe Gonzalez (now at Stanford)

Installation (Feb 2024)

More commissioning plots in backup

Detector commissioning

- DAQ system fully validated: we can efficiently veto muons and beam related backgrounds!
- Response and timing fully calibrated
 finalizing offline background
 measurements now (paper out soon)

M. Citron mcitron@ucdavis.edu

Response calibration using Cd₁₀₉ **source**

ltem	cost k US\$	
Scintillator	240	
PMTs+bases	1280	
HV and readout cables	129	
DAQ: CAEN readout	816	
(DAQ: bespoke readout)	(129)	
panels	37	
slabs	22	
mechanics	25	
amplifiers	5	
Infrastructure	100	

1900 mm FORMOSA material budget 1900 mm 4800 mm Trigger board 2 Readout

Total = \$1.7-2.4M

Costs based on quotes from established suppliers for milliQan/prototypes

M. Citron mcitron@ucdavis.edu

Opportunity for cost saving with alternative DAQ strategy (used for SUBMET experiment)

Labor costs in backup

Extending FORMOSA sensitivity

- FORMOSA subdetector made from high performance scintillator such as CeBr3
 - Factor ~35 larger light yield for same length compared to plastic, fast with low internal radioactivity
- Considerable sensitivity gain possible!
- More prototype upgrades planned for YETS (see backup)

M. Citron mcitron@ucdavis.edu

12

Incorporated module into demonstrator in Sept 2024

FORMOSA collaboration

Institutes across three continents with extensive experience building, commissioning, and operating millicharge particle detectors!

Summary

First FORMOSA workshop (Aug 2024)

- FORMOSA is an **agile experiment** to explore the dark sector!
- Collaboration brings extensive experience in detector construction, commissioning and operation from both past and on-going scintillator-based detectors
- FORMOSA detector design mature and feasibility in challenging forward location fully validated with prototype detector

FORMOSA demonstrator

- A small-scale version of the full FORMOSA detector was installed during YETS 2023
- Located in the UJ12 cavern (behind FASER)
- Goal: validate DAQ strategy, measure backgrounds and prove search for mcps is feasible in the forward region
- **DAQ**: CAEN V1743 digis with Altera Cyclone IV FPGA trigger board (similar to milliQan)

place

detector

FORMOSA DAQ and HV

LVDS signals for trigger decision

- Reconstruct complete pulse information using two 16 channel CAEN V1743 digitizer
- Flexible trigger decisions using customized trigger board equipped with Altera Cyclone IV FPGA
- DAQ boards and HV in FASER crate
- Many thanks to the FASER collaboration (particularly Jamie Boyd, Brian Petersen) for their help!

Alignment with beam muons

Beam backgrounds

- Initially beam backgrounds (not present at FPF) overwhelmed our trigger
- Addressed by adding side panels + vetoes on multiple bars hit in each layer

Labor costs

Position	FTE/year	N years	cost k US\$
Mechanical engineer	0.25	5	187.5
electrical engineer	0.1	5	100
technicians	0.2	5	75
postdoc	4	5	2000
students	6	5	1500
Total			3862.5

Future plans for the FORMOSA demonstrator

- Adding hermetic veto panels in 2024 YETS
- Finish analysis of collected data to measure backgrounds for full detector

- Depending on funding could continue to expand detector to have physics capability in 2026/early HL-LHC
- milliQan bar sized detector would have excellent sensitivity!