

Lucie Linssen on behalf of the many contributors to the CLIC detector study http://lcd.web.cern.ch/LCD/

- Detector overview
 - Comparison with CMS
- Detector challenges at CLIC
 - Comparison to LHC
- Detector concepts, overview
- Beam-induced background
- Sub-detectors at CLIC
 - Vertex detector
 - Tracking
 - Hadron Calorimetry and Particle Flow Analysis (PFA)
 - Muon instrumentation
- Background suppression at CLIC
- Detector benchmark studies
- R&D plans

(S)LHC, ILC, CLIC reach

	LHC 100 fb ⁻¹	ILC 800 GeV 500 fb ⁻¹	SLHC 1000 fb ⁻¹	CLIC 3 TeV 1000 fb ⁻¹
Squarks (TeV)	2.5	0.4	3	1.5
Sleptons (TeV)	0.34	0.4		1.5
New gauge boson Z' (TeV)	5	8	6	22
Excited quark q* (TeV)	6.5	0.8	7.5	3
Excited lepton I* (TeV)	3.4	0.8		3
Two extra space dimensions (TeV)	9	5-8.5	12	20-35
Strong W _L W _L scattering	2σ	-	4σ	70σ
Triple-gauge Coupling (95%)	.0014	0.0004	0.0006	0.00013

Linear Collider experiment

... similar to CMS experiment

https://cms-docdb.cern.ch/cgi-bin/PublicEPPOGDocDB/RetrieveFile?docid=97&version=1&filename=CMS_Slice_elab.swf

CMS tracker insertion in 2007

Lucie Linssen

22 July 2011

<#>/47

Physics

 Unambiguous identification of multi-jet decays of Z's, W's, top, H's, χ's,

ZHH

 Higgs recoil mass and Susy decay endpoint measurements

 $ZH \rightarrow \ell^+ \ell^- X$

- Full flavor identification and quark charge determination for heavy quarks $ZH, H \rightarrow c\overline{c}, b\overline{b}, ...$
- Full hermiticity to identify and measure missing energy and eliminate SM backgrounds to SUSY

 $\widetilde{\mu}$ decay

• The unexpected

Detector

 Demands unprecedented jet energy resolution

$$\sigma_{E_{jet}} / E_{jet} = 3\%$$

Pushes tracker momentum resolution

$$\sigma(1/p_T) = 5 \times 10^{-5} (GeV^{-1})$$

 Demands superb impact parameter resolution

$$\sigma_{\scriptscriptstyle r\phi}\approx\sigma_{\scriptscriptstyle rz}\approx5\oplus10/(p\sin^{3/2}\vartheta)$$

• Instrumented forward region

 $\Omega = 4\pi$

Smarts Marcel Demarteau ANL

In a nutshell:

CLIC detector:

•High precision:

Jet energy resolution

=> fine-grained calorimetry

Momentum resolution

Impact parameter resolution

•Overlapping beam-induced background:

- •High background rates, medium energies
- •High occupancies
- •Cannot use vertex separation
- •Need very precise timing (1, 2, 5, 10ns)

•No issue of radiation damage (10⁻⁴ LHC)

- •Beam crossings "sporadic"
- •No trigger, read-out of full 156 ns train

LHC detector:

•Medium-high precision:

- •Very precise ECAL (CMS)
- •Very precise muon tracking (ATLAS)

•Overlapping minimum-bias events:

- •High background rates, high energies
- •High occupancies
- •Can use vertex separation in z
- •Need precise time-stamping (25 ns)
- •Severe challenge of radiation damage
- •Continuous beam crossings
- •Trigger has to achieve huge data reduction

ILD

<image>

SiD

CLIC detector concepts are based on SiD and ILD concepts from ILC. Modified to meet CLIC requirements

Two experiments in push-pull

Why ILC concepts need changes for CLIC

- Due to beam-induced background and short time between bunches:
 - High occupancy in the inner regions (incoherent pairs)
 - Jet energy scale and resolution are affected ($\gamma\gamma$ =>hadrons)
 - All detectors need precise (few nsec) time-tagging of hits
- Narrow jets at high energy
 - Calorimeter has to measure high-energy particles
 - Calorimeter needs to be deeper, but without increasing coil size

Changes to ILD for CLIC

These images are derived from the simulation models for the CDR

Details of forward detector region

Train repetition rate 50 Hz 156 ns 20 ms CLIC 1 train = 312 bunches CLIC: 0.5 ns apart 50 Hz **ILC:** 1 train = \sim 1312 bunches ~738 ns apart 5 Hz

- CLIC 3TeV beamstrahlung $\Delta E/E = 29\% (10 \times ILC_{value})$
 - Coherent pairs (3.8×10⁸ per bunch crossing) <= disappear in beam pipe
 - Incoherent pairs (3.0×10⁵ per bunch crossing) <= suppressed by strong solenoid-field</p>
 - γγ interactions => hadrons (3.2 hadron events per bunch crossing)
- In addition: Muon background from beam delivery system(~5 muons per bunch crossing) <= spread over detector surface

Beam-induced background (2)

Coherent pairs:

Very numerous at very low angles Very high total energy

Incoherent pairs:

Extend to larger angles More difficult for the detector

A. Sailer

Determines beam crossing angle (20 mrad) Determines opening angle of beam pipe for outgoing beam (±10 mrad)

CLIC beamstrahlung: $\gamma\gamma \rightarrow$ hadrons

Per bunch crossing:

•3.2 such events
•~28 particles into the detector
•50 GeV
•Forward-peaked

15 TeV dumped in the detector per 156 ns bunch train !

we need TIME STAMPING ! ...and play with clever event selections

D. Dannheim

CLIC vertex detector region

Lucie Linssen

²² July 2011

•Vertex detector needs to be as close as possible to the interaction point

•Need to keep occupancy (particle density) as low as possible in critical regions

Innermost vertex layer => direct hits
Beam pipe => creation of secondary particles

3 TeV, inc. pairs, p_{τ} >8 MeV, θ >2°: charged particles / mm² / bx (cylindrical projection)

Barrel occupancies in CLIC_ILD_CDR vs. radius

- Incoherent pairs dominate at small radius
- $\gamma\gamma \rightarrow$ hadrons dominate at larger radii
- Good agreement between full and fast simulation
- Up to ~1.5 hits / mm² / bunch train in innermost vertex layer

D. Dannheim

TPC = time projection chamber

=> 3D tracking devices, many measurement points, low-mass

TPC tracker occupancies

Occupancy (percent of time voxels occupied) for full bunch train and 6*1 mm² pads at 40 MHz readout

Lucie Linssen

22 July 2011

Jet energy resolution

At least: need to separate W/Z hadronic decays

 W and Z widths and the separation between them set the goal for jet energy resolution

Requires $\Delta E/E = 3\%$ for jets at high energies Typical jet energies: up to 0.5-1 TeV

- In a typical jet (on average):
 - 60% of jet energy in charged hadrons
 - 30% in photons (mainly from $\pi^0 \Rightarrow \gamma \gamma$)
 - 10% in neutral hadrons (mainly n and K_L)

How to....

Traditional sandwich calorimetry

• Approximately 70% of energy measured in HCAL with $\sigma_E/E \approx \frac{60\%}{\sqrt{E (\text{GeV})}}$

 \Rightarrow Jet energy resolution limited by intrinsically 'poor' HCAL resolution

Particle Flow Calorimetry

- Charged particles measured in tracker (essentially perfectly)
- Photons in ECAL: $\sigma_E/E < 20\%\sqrt{E (\text{GeV})}$
- Only 10% of jet energy from HCAL ⇒ much improved resolution

... trying to find a super-dense material for our CLIC hadron calorimeter

Required resolution reached at smaller HCAL outer radius for **tungsten** than for **steel absorber**

Lucie Linssen

PFA study Full ILD-type detector barrel with tungsten HCAL absorbers

A. Lucaci Timoce

CLIC_ILD has:

Barrel: 7.5 Λ_i , with tungsten absorber End cap: 7.5 Λ_i , with steel absorber

Tungsten HCAL prototype

Main purpose: Validation of Geant4 simulation for hadronic showers in tungsten

Scintillator tiles 3*3 cm (in the centre) Read out by SiPM (and wave-length shifting fibre)

Lucie Linssen

Yoke + Muon instrumentation

Strategy followed for the suppression of background:

•Full reconstruction + PFA analysis with background overlay

•Taking into account detector integration times and hit timing resolution •Provides TOF-corrected timing of clusters

•Precision on cluster-time is typically better than time-resolution of individual hits

•Then apply cluster-based timing cuts

These cuts depend on particle-type, p_t and detector region
 This allows to protect high-p_t physics objects and to act more severely on low-p_t forward-going objects (where background is more severe)

Core Marlin software processors involved:

TimingOverlay LooseSelectedPandoraNewPFAs SelectedPandoraNewPFAs TightSelectedPandoraNewPFAs

M. Thomson, J. Marshall

Hadron shower development in tungsten is slower than in steel

Signal in tungsten HCAL need to be integrated over at least ~50 ns

- ★ Calorimeters
 - Assume all hits have a timestamp
 - currently no smearing of hit times, assumed ~ 2 ns
 - Assume two hit separation limited to 20 ns
 - Hits within 20 ns are merged (use time for highest ph hit)
 - For ECAL/HCAL endcap reconstruction integrate over 10 ns
 - For HCAL barrel integrate over 100 ns
- ★ Silicon in trackers
 - Integrate over time window of 10 ns
 - No accounting for multiple hit capability
 - occupancies fairly low
- ★ TPC
 - Integrate over full bunch-train
 - Require a matched Si hit in the above 10 ns window
 - For looping tracks, also require arrival at ECAL within 50 ns

Defines input to event reconstruction

Marlin Processor "OverlayTiming"

•Combining physics and background data streams

- •At digitisation stage
- •For selected number of bunch crossings

•Taking into account detector integration times

PFO-based timing cuts

Region	p _t range	Time cut			
Photons					
central	$0.75~{ m GeV} \le p_t < 4.0~{ m GeV}$	t < 2.0 nsec			
$(\cos\theta \le 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.0 nsec			
forward	$0.75 { m ~GeV} \le p_t < 4.0 { m ~GeV}$	t < 2.0 nsec			
$(\cos \theta > 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.0 nsec			
Neutral hadrons					
central	$0.75~{ m GeV} \le p_t < 8.0~{ m GeV}$	t < 2.5 nsec			
$(\cos\theta \le 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.5 nsec			
forward	$0.75~{ m GeV} \le p_t < 8.0~{ m GeV}$	t < 2.0 nsec			
$(\cos \theta > 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.0 nsec			
Charged PFOs					
all	$0.75~{ m GeV} \le p_t < 4.0~{ m GeV}$	t < 3.0 nsec			
	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.5 nsec			

- Track-only minimum *p*_t: 0.5 GeV
- Track-only maximum time at ECAL: 10 nsec

Lucie Linssen

M. Thomson, J. Marshall

PandoraNewPFAs

1 TeV Z=>qqbar

1.4 TeV of background !

with 60 BX background

Lucie Linssen

LooseSelectedPandoraNewPFAs

0.3 TeV of background

22 July 2011

SelectedPandoraNewPFAs

0.2 TeV of background

22 July 2011

TightSelectedPandoraNewPFAs

0.1 TeV of background

M. Thomson. J. Marshall

Impact of timing cuts on jets

Impact of the PFOSelector timing cuts on the jet energy resolution

$E_{jet} [GeV]$	45	100	250	500
no cut	3.98 ± 0.05	3.15 ± 0.04	3.00 ± 0.04	3.26 ± 0.06
loose cut	4.40 ± 0.06	3.34 ± 0.04	3.08 ± 0.04	3.29 ± 0.06
default cut	5.15 ± 0.07	3.64 ± 0.05	3.17 ± 0.04	3.33 ± 0.06
tight cut	5.95 ± 0.08	3.99 ± 0.05	3.30 ± 0.04	3.37 ± 0.06

Lucie Linssen

<#>/47

ILD

Full physics simulation and analysis studies with beam background overlay ($\gamma\gamma =>$ hadrons)

Choose different channels, with emphasis on mapping various crucial aspects of detector performance (jet measurement, missing energy, isolated leptons, flavour tagging etc.)

Squark study / Jet finding at CLIC (1)

Several jet-finding algorithms are explored

Squark study / Jet finding at CLIC (2)

Example: Squark benchmark study, Full simulation level (including PFO timing cuts)

- Hadron k_T algorithm relatively robust agains hadron background
 - still: Effects in particular when going to tight cuts visible
- ee-k_T very sensitive to the choice of PFO cuts Not a good option!

L. Weuste, F. Simon

Top reconstruction (ttbar, 6 jets) at 3 TeV

The CLIC detector CDR is well on track This would not have been possible without all prior work done for the ILC

Requirements for the vertex detector:

- Single-layer position resolution 3-4μm
 - Typically achieved with 20*20 micron pixels
- Single-layer material thickness 0.1%X₀ 0.2%X₀
 - $_{\odot}$ Equivalent to 50 μm thick sensor + 50 μm thick readout chip + thin support + connect
 - Very low power dissipation => no liquid cooling ("air flow")
 - Requires power pulsing (factor ~50 in heat dissipation)
- Time-stamping ~5-10 ns
 - $_{\circ}$ $\,$ Still needs more study with full simulation
- Occupancy
 - $_{\circ}$ ~1.5% per 20*20 μ m2 pixel per bunch train (156 ns) in the innermost layer
- Triggerless readout over the 156 ns bunch-train
 - $_{\circ}$ $\,$ With full data readout in less than 200-400 μsec to allow power-pulsing

Very challenging hardware project !

Parameter	Value	
Center-of-mass energy √s	3 TeV	
Instantaneous peak luminosity	5.9x10 ³⁴ cm ⁻² s ⁻¹	
Integrated luminosity per year	500 fb ⁻¹	
Beam crossing angle	20 mrad	
Train length	156 ns	
N _{bunches} / train	312 (every 0.5 ns)	
Train repetition rate	50 Hz	
IP size x/y/z	45 nm / 1 nm / 40 μm	
#γγ→hadrons/bx	3.2	
# incoherent electron pairs / bx	3 x 10 ⁵	
# halo muons	5 (including safety factor of 5)	

120 mm

May 2011

Lucie Linssen

CLIC_ILD_CDR vertex and tracking 51

1

Time-stamping with TPC at CLIC

Approximately 40 micron drift per BX, ~7mm drift for full train Study mismatch between outer Si tracker (SET) and TPC tracks. Different muon energies, different angles.

90 % of the muons are assigned correctly to within \pm 5 bunch crossings For: Energy 50 GeV, dip angle 5, SET resolution 50 μm

M. Killenberg

Hardware R&D on the experiment

- CERN LCD hardware/engineering R&D (<u>needed</u> beyond ILC existing developments):
- Vertex detector
 - trade-off between pixel size, amount of material and timing resolution
- Hadron calorimetry
 - Tungsten-based HCAL (PFA calo, within CALICE)
- Power pulsing
 - In view of the 50 Hz CLIC time structure => allows for low-mass detectors
- Solenoid coil
 - Large high-field solenoid concept, reinforced conductor (CMS/ATLAS experience)
- Overall engineering design and integration studies
 - In view of sub-nm precision required for FF quadrupoles
 - For heavier calorimeter, larger overall CLIC detector size etc.

In addition at CERN: TPC electronics development (Timepix-2, S-ALTRO)

Solenoid studies

Engineering studies of 4-5 T solenoid with 3.4-2.8 m inner bore

Based on experience of CMS and ATLAS superconducting solenoids

Engineering calculations

Coil design

Reinforced conductor (materials R&D and extrusion test)

Services, quench protection, etc.

Field map of 5T magnet model

CERN, KEK, SLAC, Genova INFN, CEA, etc

Coil composition for 5T magnet model