

NA61/SHINE future plans

- precision studies of the onset of fireball of strongly interacting matter with O, Mg, and B beams
- verification of the hypothesis of large isospin violation with N=Z nuclei (the simplest case) - O and Mg
- charm and anti-charm correlations in central Pb+Pb collisions at 150A GeV/c with LAST (data rate → 10 kHz)

	SIS18 / SIS100		SPS			RHIC	LHC
	HADES	CBM	NA61	SHINE	NA60+	STAR	ALICE / ALICE3
Domains of	Properties of dense		Onsets of deconfinement and fireball			Properties of dense	
heavy-ion physics	hadronic matter		Critical point			quark-gluon plasma	
$\sqrt{s_{NN}}$ (GeV)	1.9 - 4.9	2.7 - 4.9	5.1 - 17.3		6.3 - 17.3	3 – 200	2760 - 5440
Start date	running	2028	running		>2029	running	running / 2035
			light ions	Pb+Pb			
Bulk properties	+	+	+	+		+	+
E-by-E fluctuations	+	+	+	+		+	+
Resonances	+	+	+	+	+	+	+
Open charm			+	+	+	only top energy	+
$c - \bar{c}$ correlations			15.55-45	+	+	320.000	+
Quarkonium	+	+			+	+	+
Dileptons	+	+			+	+	+

M. Gazdzicki et al., arXiv:2305.00212
[hep-ph]

For discussion - NA60+

Physics questions → the 4 (main) pillars

Caloric curve of QGP

 \rightarrow Measurement of temperature of thermal dimuons vs $\sqrt{s_{_{NN}}}$

Chiral symmetry restoration

 $_{\rightarrow}$ $\rho\text{-}a_{1}$ mixing in the dimuon channel

QGP transport coeff. and charm hadronization

→ Hadronic decays of open HF mesons/baryons

Charmonium melting in the QGP

 \rightarrow Charmonium suppression vs $\sqrt{s_{NN}}$ (dimuon decay channel)

Almost unexplored observables below top SPS energy Characterization of high-muB QGP Nature of the QGP phase transition Experimental aspects

Coupling state of the art and well-tested detector techniques → strategic collaboration with ALICE ITS3 project for vertex spectrometer, use of (large) facilities for construction of muon detectors

Measurement of rare probes \rightarrow need high luminosity and focused Pb and proton beam from low to top SPS energy $\sim 10^7$ Pb/spill, >5 10^8 p/spill

Completely new experiment → address significant integration issues to adapt the experimental hall, transport/install large equipments (magnets)

Good progress on all these aspects also thanks to significant CERN support in the frame of PBC, several aspects still being assessed

Summary

- o CBM will explore the high μ_B region of the QCD phase diagram starting 2028
- o Excitation function for dileptons, e-b-e fluctuations, strangeness
- o Importance of transport theory for evolution of fireball at moderate beam energies
- o Complementary program using proton beam with focus on strangeness baryons and charm (meson-baryon coupling) see White Paper "QCD at FAIR" (coming soon)
- Long term view is installation of second (stretcher) ring for higher energies and efficient parallel operation with storage ring experiments. Opens charm physics, more reachh in CEP search
- o Perspective for a multi-purpose experiment using relativistic radioactive beams
- Strong interest in developments of silicon pixel sensors (high timing precision and radiation hardness)