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Introduction to Chapter 11

Basic problem: can physics discuss systems w/o a Hamiltonian?
w/0 a known dynamical equation?

Examples: granular material
modelling friction
Viscous fluid dynamics — not yet mathematically solvable
(One of the unsolved Millennium Problems)

On a qualitative level, turbulence and financial markets are attractively
similar. For example, in turbulence, one injects energy at a large scale by,
e.g., stirring a bucket of water, and then one observes the manner in which
the energy is transferred to successively smaller scales. In financial systems
‘information’ can be injected into the system on a large scale and the reaction
to this information is transferred to smaller scales — down to individual
investors. Indeed, the word ‘turbulent” has come into common parlance since
price fluctuations in finance qualitatively resemble velocity fluctuations in
turbulence. Is this qualitative parallel useful on a quantltdtwe level, such
that our understanding of turbulence might be relevant to

price fluctuations? Opportunlty cross-fertilization

In this chapter, we will discuss fully developed turbulence in parallel
with the stochastic modeling of stock prices. Our aim is to show that
cross-fertilization between the two disciplines might be useful, not that the
turbulence analogy is quantitatively correct. We shall find that the formal
correspondence between turbulence and financial systems is not supported
by quantitative calculations.




11.1 Turbulencia
Navier-Stokes egyenletek

Millennium Prize Problems

Navier-Stokes existence and smoothness [edit] Birch and Swinnerton-Dyer conjecture
Hodge conjecture
Navier—Stokes existence and smoothness

Inertia (per volume) P versus NP problem

- A - Divergengs of stress Poincaré conjecture (solved)
Ju 7 h Riemann hypothesis
ot + (u-V)u - v vzu, = —Vuw + E_/ ' Yang—Mills existenzz and mass gap

\‘,“"_/ Convection Diffusion Internal External ooz
Variation source source

Main article: Navier—Stokes existence and smoothness

The Navier—Stokes equations describe the motion of fluids, and are one of the pillars of fluid
mechanics. However, theoretical understanding of their solutions is incomplete, despite its
importance in science and engineering. For the three-dimensional system of equations, and
given some initial conditions, mathematicians have not yet proven that smooth solutions
always exist. This is called the Navier—Stokes existence and smoothness problem.

The problem, restricted to the case of an incompressible flow, is to prove either that smooth,
globally defined solutions exist that meet certain conditions, or that they do not always exist

and the equations break down. The official statement of the problem was given by Charles
Fefferman.[13!




11.1 Turbulencia

Navier-Stokes egyenletek 2.

Consider a simple system that exhibits turbulence, a fluid of kinematic
Main article: Navier—Stokes existence and smoothness viscosity v flowing with velocity V' in a pipe of diameter L. The control
Inertia (per volume) parameter whose value determines the ‘complexity’ of this flowing fluid is

Divergence of stress
o~ A

Navier—-Stokes existence and smoothness |edit]

"~ du - the Reynolds number,
™ +u-Vu—-—vVu= -Vuw + g
N J N~ ——
~ Convection Diffusion Internal E;e?:al L V
Variation source source RL, = . ( 1 1 . 1 }

v
When Re reaches a particular threshold value, the ‘complexities of the fluid
explode’ as it suddenly becomes turbulent.

The equations describing the time evolution of an incompressible fluid
have been known since Navier’s work was published in 1823 [128], which
led to what are now called the Navier—Stokes equations,

%V{r, t)+ (V(r,t) - V)V(r,t) = —VP + vVEV{r, t), (11.2)

and

V-V(r,1) = 0. (11.3)

Here V(r,t) is the velocity vector at position r and time t, and P is the
pressure. The Navier-Stokes equations characterize completely ‘fully devel-
oped turbulence’, a technical term indicating turbulence at a high Reynolds
number. The analytical solution of (11.2) and (11.3) has proved impossible,
and even numerical solutions are impossible for very large values of Re.




11.1 Turbulencia
Navier-Stokes 3: Kolmogorov’s scaling

%V{r, t) 4+ (V(r,t) - V)V(r,t) = —VP + vV2V(r,1),
O

V- V(r,t) =0.

In 1941, a breakthrough in the description of fully developed turbulence
was achieved by Kolmogorov [82-84]. He showed that in the limit of infinite
Reynolds numbers, the mean square velocity increment

([AV () = ([V(r + ) — V(r)]?) (11.4)
behaves approximately as
([AV(£)17) ~ 2 (11.5)

in the inertial range, where the dimensions are smaller than the overall
dimension within which the fluid’s turbulent behavior occurs and larger
than the typical length below which kinetic energy is dissipated into heat.

Kolmogorov’s theory describes well the second-order {[AV(£)]?) and pro-
vides the exact relation for the third-order ([AV(#)]?) moments observed in
experiments, but fails to describe higher moments.
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Navier-Stokes 4: Kolmogorov’s scaling and dimensional analysis

%V{r, t) + (V(r, 1) - V)V(r,t) = —VP + vV2V(r, 1),
O

Navier-Stokes 5:
dimensional
analysis from 11.3

V- V(r,t) =0.

Next we show that dimensional consistency requires that the mean square
velocity increment assumes the form

([AV(£)])?) = Ce¥3423, (11.7)

where C i1s a dimensionless constant. This equation is the only one possi-
ble because the energy dissipation rate per unit mass has the dimensions

[L)2[T]73. In fact, if we define a to be the exponent of €, and b to be the
exponent of £ in Eq. (11.7), then dimensional consistency requires that

(L) [L]*
[T]> [T
where the equality indicates that both sides of the equation have the same

dimension. This condition is satisfied by equating powers of L and T,

{2:2a+b (11.9)
2 = 3a. '

(L], (11.8)

Hence a=2/3 and b = 2/3.



11.2 Parallels between prizes and flows
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Fig. 11.1. (a) Time evolution of the S&P 500, sampled with a time resolution

At = 1 h, over the period January 1984 to December 1989. (b) Hourly variations of
the S&P 500 index in the 6-year period January 1984 to December 1989.
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Fig. 11.2. Time evolution of the fluid velocity in fully developed turbulence. (a)
Time evolution of the wind velocity recorded in the atmosphere at extremely high
Reynolds number; the Taylor microscale Reynolds number is of the order of 1,500.
The time units are given in arbitrary units. (b) Velocity differences of the time series
given in (a). Adapted from [113].
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Similar scaling laws, different exponents!
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Fig. 11.3. (a) Standard deviation a(Atr) of the probability distribution P(/) charac-
terizing the increments Zu,(t) plotted double logarithmically as a function of Az for
the S&P 500 time series. After a time interval of superdiffusive behavior (0 < At < 15
minutes), a diffusive behavior close to the one expected for a random process with
uncorrelated increments is observed; the measured diffusion exponent 0.53 (the
slope of the solid line) is close to the theoretical value 1/2. (b) Standard deviation
a(At) of the probability distribution P(U) characterizing the velocity increments
Uai(t) = V(t + At) — V(1) plotted double logarithmically as a function of At for the
velocity difference time series in turbulence. After a time interval of superdiffusive
behavior (0 < At < 10), a subdiffusive behavior close to the one expected for a fluid
in the inertial range is observed. In fact, the measured diffusion exponent 0.33 (the
slope of the solid line) is close to the theoretical value 1/3. Adapted from [112].




11.4. Discussion

e similarities: intermittency, non-Gaussian pdf, and gradual convergence to
a Gaussian attractor in probability, and
differences: the pdfs have different shapes in the two systems, and the
probability of return to the origin shows different behavior — for turbulence
we do not observe a scaling regime whereas for index changes we observe
a scaling regime spanning a time interval of more than three orders
of magnitude. Moreover, velocity fluctuations are anticorrelated whereas
index (or exchange rate) fluctuations are essentially uncorrelated.

A closer inspection of Kolmogorov’s theory explains why the observation
of this difference i1s not surprising. The 2/3 law for the evolution of the
variance of velocity fluctuations, Eq. (11.5), 1s valid only for a system in which
the dynamical evolution 1s essentially controlled by the energy dissipation
rate per unit mass. We do not see any rational reason supporting the idea that
assets 1n a financial market should have a dynamical evolution controlled
by a similar variable. Indeed no analog of the 2/3 law appears to hold for
price dynamics.




