

TOP-UP INJECTION STUDIES

Peter Kicsiny, X. Buffat, K. Le Nguyen Nguyen, T. Pieloni, M. Seidel

FCC-ee Accelerator Design Meeting 12/12/2024

What has been done:

- Tracking with linear transfer map + beam-beam
 - Single top-up injection of one beam
 - Scan of injection offset
 - Scan of bunch intensity asymmetry
 - Scan of beam parameters at the IP (in backup slide)

What hasn't been done:

- Tracking & top-up with the full lattice
- Optimization of booster parameters

Simplified tracking setup

- 4 IP baseline design [1]
- Iterate over ¼ superperiod of machine

Longitudinal top-up injection

- N₀: nominal bunch intensity
- N_m: # macroparticles
- ϵ : bunch intensity asymmetry factor: e.g. ϵ =0.05 for 5% asym.: top-up beam from 0.95N₀ to 1.05N₀
- w: "weight" of each macroparticle = # real charges represented by it
- δ_{io}: injection offset in units of the rms rel. energy spread

Longitudinal top-up injection

1. Select N_{m,i} macroparticles

- N₀: nominal bunch intensity
- N_m: # macroparticles
- ϵ : bunch intensity asymmetry factor: e.g. ϵ =0.05 for 5% asym.: top-up beam from 0.95N₀ to 1.05N₀
- w: "weight" of each macroparticle = # real charges represented by it
- δ_{io}: injection offset in units of the rms rel. energy spread

- N₀: nominal bunch intensity
- N_m: # macroparticles
- ϵ : bunch intensity asymmetry factor: e.g. ϵ =0.05 for 5% asym.: top-up beam from 0.95N₀ to 1.05N₀
- w: "weight" of each macroparticle = # real charges represented by it
- δ_{io}: injection offset in units of the rms rel. energy spread

- N₀: nominal bunch intensity
- N_m: # macroparticles
- ϵ : bunch intensity asymmetry factor: e.g. ϵ =0.05 for 5% asym.: top-up beam from 0.95N₀ to 1.05N₀
- w: "weight" of each macroparticle = # real charges represented by it
- δ_{io}: injection offset in units of the rms rel. energy spread

Fixed bunch: nominal parameters Perturbed bunch: start with 0.95N₀ (ϵ =0.05, δ_{io} =7)

- 1. Track till equilibrium
- 2. Top-up perturbed bunch to 1.05N₀
- 3. Track till equilibrium

- 1. Fix bunch intensity asymmetry to ε =0.05
- 2. Scan injection offset
- 3. Record equilibrium luminosity after top-up
- No unexpected effects were observed

Quasi-strong-strong simulation of luminosity (no top-up here)

- 1. Scan mean bunch intensity N₀
- 2. For each N₀ scan Δ N: N_± = N₀(1± Δ N)
- 3. Track beams till equilibrium

Summary

- Several parameter scans have been done with **linear tracking**
- Flip-flop mechanism results in new equilibrium with reduced luminosity
- Reaching new equilibrium is fast (~synchrotron radiation damping rate)
- No reduction of injection efficiency/beam loss was observed due to beam-beam
- Simulation details can be found in [3]
- Tracking with full lattice (proper DA) needs to be performed for more realistic beam dynamics during/after injection

References

[1] K. Oide, FCC-ee collider optics, FCC week (2023) https://indico.cern.ch/event/1202105/contributions/5408583/attachments/2659051/4608141/FCCWeek_Optics_Oide_230606.pdf

[2] Impact of bunch intensity asymmetry in colliders featuring strong beamstrahlung K. Le Nguyen Nguyen, X. Buffat, P. Kicsiny, T. Pieloni, 2024 arXiv preprint <u>https://arxiv.org/abs/2404.09012</u>

[3] Impact of beam asymmetries at the Future Circular Collider *e+e-*P. Kicsiny, X. Buffat, K. Le Nguyen Nguyen, T. Pieloni, M. Seidel, 2024
Phys. Rev. Accel. Beams 27, 121001 <u>https://doi.org/10.1103/PhysRevAccelBeams.27.121001</u>

BACKUP

Simulation parameters

Slide #	7	8	9	10
Machine setup	FCC 4 IP from 2023 FCC week, W	FCC 4 IP from 2023 FCC week, W	FCC 4 IP from 2023 FCC week	FCC 4 IP from 2023 FCC week
Lattice model	linear	linear	linear	linear
Beam-beam model	QSS f=100 (before top-up) SS f=1 (after top-up)	QSS f=100 (before top-up) SS f=1 (after top-up)	QSS f=100	QSS f=100
# slices in beam-beam	100	100	100 (200 for Z)	100 (200 for Z)
# macroparti cles	1e5	1e5	1e5 (1e6 for Z)	1e5 (1e6 for Z)
# turns	1e4 each stage (4e4 superperiod iterations)	1e4 each stage (4e4 superperiod iterations)	Z: 8e4, W: 4e4, H: 2e4, T: 2e4 superperiod iterations	Z: 8e4, W: 4e4, H: 2e4, T: 2e4 superperiod iterations

f: update frequency of stat. moments in beam-beam in every X superperiod iterations

• Equilibrium reached with a rate proportional to radiation damping time

Eq. reached in ~3 s (=1e4 turns)

Eq. reached in ~0.03 s (=100 turns)

- Trivial limit to injection efficiency is the momentum acceptance
- No other limits observed

Equilibrium bunch length

• W: significant vertical blowup due to 3D flip-flop

Quasi-strong-strong simulation of beam parameter perturbations

- Fixed bunch: nominal parameters
- Perturbed bunch: scan variable u (β_x , β_y , ε_x , ε_y) in range of 0.1-10x nominal value
- All other parameters of the perturbed bunch kept at their nominal value
- Track till euilibrium & observe vertical rms bunch size σ_v at IP of both beams
- Threshold: $\sigma_y < 1.5 \sigma_{y, \text{ nominal}}$

