
Reliability and Availability Working Group1

Minutes for the RAWG meeting on 9th December 20242

Present: A. Arias Vazquez, K. Blantos, M. Blaskiewicz, H. Boukabache, E. Boulharts, K. Ceesay-Seitz, S. Er, B. Fer-3

nandez Adiego, X. Fink, Q. Genoud, B. Guncic, P. Jurcso, F. Kolitsi, A. Kostic, S. Kulis, T. Ladzinski, C. Laforge,4

H. Leicester, I. Lopez-Miguel (TU Wien), M. Lupi, T. Miceli, D. Perrin, A. Pinho, A. Pulli, M. Saccani, S. Scarfi,5

N. Voumard, F. Waldhauser, D. Westermann, L. Zwalinski6

RAWG Meeting: Formal Methods and Verification7

The slides are available on indico.8

Agenda9

1 µCFI: Formal Verification of Microarchitectural Control-flow Integrity - K. Ceesay-Seitz 110

2 PLCverif Extension: Verifying LTL Properties via Monitor Generation - X. Fink 211

L. Felsberger opened the meeting focused on formal methods and formal verification. He welcomed K. Ceesay-12

Seitz, a former CERN fellow working on formal verification within the CROME project (HSE-RP). K. Ceesay-13

Seitz is now a PhD student at ETH Zurich and will give an update on her latest research. Moreover, X. Fink will14

present the latest PLCVerif extension. L. Felsberger noted that activities in this field at CERN are consolidated15

under the Formal Methods Interest Group. He also mentioned a questionnaire focused on the development of16

reliable and robust gateware, which has been distributed to relevant equipment groups.17

1 µCFI: Formal Verification of Microarchitectural Control-flow Integrity - K. Ceesay-Seitz18

K. Ceesay-Seitz presented µCFI, a generalized security property for formal verification of the microarchitec-19

tural control-flow integrity. It is independent of the CPU’s verification state and can thus be applied early in the20

design cycle. The goal is to prove that no timing side channels exist, which could be used for hijacking. CellIFT,21

a previous method, tracks all the information flows with taint logic. CellDFT, a variant of CellIFT, tracks only22

data flows coming from the input. µCFI combines CellIFT with formal verification to prove that the operand23

data cannot influence the program counter. The proposed approach shows an automated verification method and24

implementation, which allowed discovery of five new vulnerabilities during verification of four open-source RISC-V25

CPUs.26

Discussion after the presentation:27

H. Boukabache asked if Cadence Jasper is used for implementation and if the approach would be different28

from Siemens Questa. K. Ceesay-Seitz confirmed that Cadence Jasper is used for implementation and that the29

approach is similar to Questa. H. Boukabache further asked if K. Ceesay-Seitz is working on the hardware30

implementation or hardware description level and what the differences between the evaluated processors are.31

K. Ceesay-Seitz replied that she is working on hardware implementation and that the evaluated CPUs are different32

implementations of RISC-V processors with different instruction sets, extensions and levels of optimizations. In33

another question H. Boukabache asked how time violations can be found with formal verification. K. Ceesay-34

Seitz responded that counter changes are evaluated in real time, which allows clock cycle counting and thus35

tracking of taint flow by tracking its propagation in clock cycles. X. Fink asked if the verification is done at36

runtime with outputs from the real system. K. Ceesay-Seitz answered that it is completely static, and the37

outputs of the system are modeled via the taint logic. B. Fernandez Adiego added that it is done at design38

time and not at runtime, which K. Ceesay-Seitz confirmed, adding that in case of a CPU all possible programs39

are evaluated during verification.40

https://indico.cern.ch/category/9071/
https://indico.cern.ch/event/1483916/
https://indico.cern.ch/event/1483916/
https://confluence.cern.ch/x/IoQwD
https://confluence.cern.ch/x/xARwHg


RAWG meeting, 9th December 2024, L. Felsberger/X. Fink/B. Mikulec/F. Waldhauser 2

A. Pulli asked how the assumption that the software must guarantee constant time execution is implemented.41

K. Ceesay-Seitz responded that software programs are often verified to be constant time executing. Depending42

on the implementation the actual execution might be constant in time or not if executed on hardware. Both43

Intel and ARM give out instructions on how to ensure this. In the presented case, the classification will be made44

based on the software verification by exactly classifying which parameter can change the program counter and45

which not. A. Pulli noted that the instruction classification depends on the program itself. K. Ceesay-Seitz46

explained that the instruction classification is purely a property of the program and the goal is to detect which47

instruction was reading a parameter and which was changing the program counter. In another question A. Pulli48

asked how the presented approach could be scaled to more complex pipelines, e.g., a branch predictor or FinFET49

units. K. Ceesay-Seitz replied that the method is conceptually applicable to more complex pipelines. However,50

specific aspects such as auto-forward and taint injection would have to be specified differently. Especially for51

larger CPUs the challenge lies in specifying properties in a scalable way to avoid verification time explosion, which52

is an open problem many researchers are working on.53

I. Lopez-Miguel asked about the type of formal proof that is used. K. Ceesay-Seitz responded that54

properties are specified as SystemVerilog properties for which the taint logic then does the specification. Then, the55

assumptions for the input and formal properties need to be written to allow verification in the model checker, which56

is done similarly to normal functional verifiers. X. Fink asked about the verification of specific instructions and57

the bottleneck between different CPU types. K. Ceesay-Seitz replied that the memory is completely abstract and58

valid for infinite program types. H. Boukabache asked whether formal verification for security can be generalized59

and used for other applications. K. Ceesay-Seitz agreed that it is applicable for all use cases that use information60

dependencies. L. Felsberger added that even hardware degradation leading to violations of information handling61

could be a possible use case.62

2 PLCverif Extension: Verifying LTL Properties via Monitor Generation - X. Fink63

X. Fink presented an extension of PLCverif, a tool developed at CERN for software verification of PLCs. The64

new extension allows the verification of linear temporal logic (LTL) properties, which is currently not supported65

by all verification backends. The presented approach extends the PLCverif toolbox with an algorithm for monitor-66

based verification of LTL properties using Bounded Model Checking (BMC) assertion-verification. Validation of67

the proposed algorithm on two CERN use cases demonstrated improvements of the verification times by up to68

one order of magnitude and additionally allows verification of previously unverifiable properties.69

Discussion after the presentation:70

L. Felsberger pointed out that NuSMV already supported LTL problems and asked about the benefit of71

adding support for other verification backends such as CBMC using PLCverif. X. Fink responded that this has72

two reasons: NuSMV supports a smaller set of language features, which can lead to inefficient models, and73

CBMC/ESBMC have increased performance on many verification instances. However, the presented approach is74

a lot faster due to better model reductions. L. Felsberger concluded that the proposed approach extends the75

range of applications and reduces the computation time. K. Ceesay-Seitz asked whether an adaption of the76

generated model to the model checking algorithms has been tried in PLCverif. X. Fink replied that this has77

not yet been studied, but could further enhance verification performance. B. Fernandez Adiego added that the78

models were changed slightly in the past, as some model checkers showed superior performance.79

L. Felsberger thanked both speakers for their contribution. The next RAWG meeting will be on 23.01.202580

on the topic of reliable programming and verification. L. Felsberger closed the meeting wishing all participants81

a pleasant end-of-year break.82

https://indico.cern.ch/category/9071/
https://indico.cern.ch/event/1483916/

	µCFI: Formal Verification of Microarchitectural Control-flow Integrity - K. Ceesay-Seitz 
	PLCverif Extension: Verifying LTL Properties via Monitor Generation - X. Fink 

