

μCFI: Formal Verification of Microarchitectural Control-flow Integrity

Katharina Ceesay-Seitz, Flavien Solt, Kaveh Razavi

COMSEC, Computer Security Group,

ETH Zurich

CERN RASWG 09.12.2024

ETH zürich

Published at ACM Computer and Communications Security (CCS) 2024

Testing, e.g., fuzzing

Testing, e.g., fuzzing, is incomplete

Security: need guarantee of absence of bugs

Formal verification:

• Provides formal guarantees for all inputs

Formal verification:

• Provides formal guarantees for all inputs

• Often a CPU-specific, manual effort

Formal Property Verification

Formal Property Verification

Formal Property Verification

Formal verification:

 Provides formal guarantees for all inputs

µCFI - Generalized security property

- Easy application and reuse
- Independent of CPU's verification state

=> apply it early in the design cycle

• Captures multiple threat models

Definition Microarchitectural Control Flow (µCF)

Software prog	ram (assembly instruction	ons)		
80000000 <_start>:				
80000000:	00010337	lui t1,	0×10	
80000004:	010eaf83	lw t6,	16 <mark>(</mark> t4)	
8000008:	01f32823	sw t6,	16 <mark>(t1)</mark>	
8000000c:	400b0b13	addi	s6,s6,1024	
80000010:	34319073	csrw	mtval,gp	
80000014:	341020f3	csrr	ra,mepc	
80000018:	0030c133	xor sp,	ra,gp	
	Software prog 80000000 <_ 8000000000000000000000000000000000000	Software program (assembly instruction 80000000 <_start>: 80000000: 00010337 80000004: 010eaf83 80000008: 01f32823 80000006: 400b0b13 80000010: 34319073 80000014: 341020f3 80000018: 0030c133	Software program (assembly instructions) 80000000 <_start>: 80000000: 00010337 lui t1, 80000004: 010eaf83 lw t6, 80000008: 01f32823 sw t6, 80000000: 34319073 csrw 80000014: 341020f3 svr sp,	

Architectural PC decides the order of instructions

Software 'if' = Branch instruction If condition

PC = Branch target = A Else

PC = Branch target = B

Definition Microarchitectural Control Flow (µCF)

Software program (assembly instructions)						
Architectural	80000000 <_start>:					
(software) Program Counter (PC)	80000000:	00010337	lui t1,	0×10		
	80000004:	010eaf83	lw t6,	lw t6,16 <mark>(</mark> t4)		
	8000008:	01f32823	sw t6,	sw t6,16 <mark>(</mark> t1)		
	8000000c:	400b0b13	addi	s6,s6,1024		
	80000010:	34319073	csrw	mtval,gp		
	80000014:	341020f3	csrr	ra,mepc		
	80000018:	0030c133	xor sp,	xor sp,ra,gp		

Microarchitectural control flow (µCF)

Constant Time (CT) program

Architectural control flow

reads secret data

Constant Time (CT) program

Architectural control flow

reads secret

data

Constant Time (CT) program

Architectural control flow

Constant Time (CT) program

Architectural control flow

Secret influences µCF

Execution takes longer = timing side channel

Constant Time (CT) program

Control-flow integrity secure program

Architectural control flow

Constant Time (CT) program

Architectural control flow

Control-flow integrity secure program

Architectural control flow

Input influences µCF by changing PC value

- Prove that only ISA specified control and data flows exist
- Detect non-ISA specified flows

- Prove that only ISA specified control and data flows exist
- Detect non-ISA specified flows

ISA = Instruction Set Architecture, PC = Program Counter

- Prove that only ISA specified control and data flows exist
- Detect non-ISA specified flows

- Prove that only ISA specified control and data flows exist
- Detect non-ISA specified flows

- Prove that only ISA specified control and data flows exist
- Detect non-ISA specified flows

- Prove that only ISA specified control and data flows exist
- Detect non-ISA specified flows

- Prove that only ISA specified control and data flows exist
- Detect non-ISA specified flows

ISA = Instruction Set Architecture, PC = Program Counter

Information flow tracking with taint logic – CellIFT [1]

taint = secret or attacker-controlled information

[1] F. Solt, B. Gras, K. Razavi, "CELLIFT: Leveraging Cells for Scalable and Precise Dynamic Information Flow Tracking in RTL", USENIX Security 2022 https://github.com/comsec-group/cellift-yosys

CellIFT

Taint logic (CellIFT [1]) tracks information flows

Information flow tracking with taint logic – CellIFT [1]

taint = secret or attacker-controlled

[1] F. Solt, B. Gras, K. Razavi, "CELLIFT: Leveraging Cells for Scalable and Precise Dynamic Information Flow Tracking in RTL", USENIX Security 2022

Formally Verifying µCFI

Formally Verifying µCFI

Formally Verifying µCFI

Instruction Classification

beq t1, t2, 20

control

Control-influencing:

direct branches, instructions with exceptions, ...

are expected to influence the program counter

```
If reg[t1] == reg[t2]
    Branch target = A
Else
    Branch target = B
```

My branch M

target

PC

control

reg[t1]

CellIFT

data, 🚺

control & timing flows

μCFI

Non-influencing: arithmetic, logic, ...

CPU Taint logic

CellDFT – Data Flow Tracking

Operand data

μCFI

[1] F. Solt, B. Gras, K. Razavi, "CELLIFT: Leveraging Cells for Scalable and Precise Dynamic Information Flow Tracking in RTL", USENIX Security 2022

For communication with software engineers/tools:

• Security classification per instruction

For communication with software engineers/tools:

- Security classification per instruction,
- surrounded by arbitrary, potentially insecure, instructions

For communication with software:

• Security classification per instruction

To ease debugging:

• Identify the specific instruction that leaks

• For communication with software:

• Security classification per instruction

To ease debugging:

• Identify the specific instruction that leaks

For strong security guarantees:

- consider influences on younger instructions
- over arbitrary, infinitely long programs

Precise Taint Injection

x = (taint) logic abstraction

Precise Taint Injection

Precise Taint Injection

Ξ

Model checker: Cadence Jasper Formal Property Verification App

New Discovered Security Vulnerabilities

Kronos

Constant time violation:

CVE-2023-51974

Architectural control flow

Microarchitectural control flow reg: 0

Two control-flow hijacks:

CVE-2023-51973

CVE-2024-44927

New Discovered Security Vulnerabilities

Constant time violation:

CVE-2023-51974

Architectural control flow

Microarchitectural control flow

Two control-flow hijacks: CVE-2023-51973 CVE-2024-44927

Constant time violation + data leakage:

CVE-2024-28365

Control-flow hijack

.

lbex

Conclusion

• Introduced and formalized a generalized CPU security property

Conclusion

• Introduced and formalized a generalized CPU security property

µCFI - Microarchitectural Control-flow Integrity

- Automated verification method & implementation
- 4 open-source RISC-V CPUs verified
- Discovered 5 new vulnerabilities 4 CVEs

Conclusion

Introduced and formalized a generalized CPU security property

µCFI - Microarchitectural Control-flow Integrity

- Automated verification method & implementation
- 4 open-source RISC-V CPUs verified
- Discovered 5 new vulnerabilities 4 CVEs

Thank you! Questions?

Information:

% @K_Ceesay-Seitz, @FlavienSolt

Comsec-group/mucfi https://comsec.ethz.ch/

kceesay@ethz.ch, flavien.solt@eecs.berkeley.edu

CellIFT Yosys [1] pass

*it is possible to add multiple independent taint instrumentations. Each in -/output gets a taint representation per instrumentation.

[2] F. Solt, B. Gras, K. Razavi, "CELLIFT: Leveraging Cells for Scalable and Precise Dynamic Information Flow Tracking in RTL", USENIX Security 2022

^[1] Yosys Open SYnthesis Suite - https://github.com/YosysHQ/yosys

Instruction classification

Taint Start Condition

Update Condition Yosys Pass

Read-from Condition = the condition in which a signal is updated with <u>a chosen</u> signal's value.

yosys update_condition -read-from-signals "cpuregs" -signal_name "cpuregs_rs1"

CPU code (PicoRV32):

Generated Read-from Condition:

Taint Stop Condition

Update Condition Yosys Pass

Update Condition (UC) = the condition in which a signal is updated with <u>another value than its own previous value</u>.

For example:

- enable condition of a flip flop
- '1' (True) for continuous assignments

Precise Taint Injection Conditions

Simple & precise counter examples

Update Condition (UC) / Read-from Condition (RC) Yosys Pass

s ... signal

a,b ... other internal signals 'past' = custom attribute

Find Forwarding Multiplexer Yosys Pass

- Automatically identifies forwarding multiplexers
- Checks <u>declassification precondition</u>: all outgoing paths of declassified signals reach another declassified signal or data source without passing PC

- 1. Traverse outgoing paths of forwarded data output and check declassification precondition
- 2. If a mux uses forwarded data output, back-traverse multiplexers' other input's driving logic.
- 3. Is it directly assigned with operand's register data read signal?
 - No: continue at mux output
 - Yes: Forwarding mux found X --> return mux select signal

Formal verification of information flow

Taint injection assumptions

Introducing µCFI - Microarchitectural Control-flow Integrity

