
µCFI: Formal Verification of
Microarchitectural

Control-flow Integrity

Katharina Ceesay-Seitz, Flavien Solt,

Kaveh Razavi

COMSEC, Computer Security Group,

ETH Zurich

CERN RASWG 09.12.2024

1
Published at ACM Computer and Communications Security (CCS) 2024

2

CPU Verification
Testing, e.g., fuzzing

3

CPU Verification
Testing, e.g., fuzzing,
is incomplete

Security: need guarantee of
absence of bugs

4

CPU Verification
Formal verification:
• Provides formal guarantees for

all inputs

5

CPU Verification
Formal verification:
• Provides formal guarantees for

all inputs

• Often a CPU-specific, manual effort

Formal Property Verification

Formal properties,
e.g.,
SystemVerilog
Assertions
describe desired
behavior

CPU

6

HDL
(Hardware
Description
Language)
Design

Formal Property Verification

Formal
properties,
e.g.,
SystemVerilog
Assertions

CPU

7

Formal model
checker

SAT(isfiability)
solver

CPU

Formal Property Verification

Formal
properties,
e.g.,
SystemVerilog
Assertions

CPU

Formal proof

Counter
example

8

Formal model
checker

SAT(isfiability)
solver

= property
satisfied
for all inputs

9

SIMPLER
SOLUTION?

10

CPU Verification

µCFI - Generalized security property

• Easy application and reuse

• Independent of CPU's verification state

 => apply it early in the design cycle

• Captures multiple threat models

Formal verification:
• Provides formal guarantees for

all inputs

Definition Microarchitectural Control Flow (µCF)

PC

Software program (assembly instructions)

Architectural
(software)
Program
Counter
(PC)

CPU

11

Architectural PC decides the order of instructions

If condition
 PC = Branch target = A
Else
 PC = Branch target = B

Software 'if'
=

Branch instruction

Definition Microarchitectural Control Flow (µCF)

Microarchitectural PC
= a register inside
the CPU

0x80000004 0x80000008 0x80001000

PC

update time

value

12

Software program (assembly instructions)

Architectural
(software)
Program
Counter
(PC)

Microarchitectural control flow (µCF)

CPU

Microarchitectural Control Flow Violations

13

Constant Time (CT) program

reads
secret
data

Microarchitectural Control Flow Violations

14

Constant Time (CT) program

reads
secret
data

operand:

Microarchitectural Control Flow Violations

15

Constant Time (CT) program

operand:

operand:

PROBLEM?

Microarchitectural Control Flow Violations

16

Constant Time (CT) program

Secret influences µCF

Execution takes longer = timing side channel

operand:

operand:

PCDelayed PC update

Microarchitectural Control Flow Violations

17

Constant Time (CT) program Control-flow integrity secure program

Exceptionoperand:

operand:

reads
input
data

Microarchitectural Control Flow Violations

18

Constant Time (CT) program Control-flow integrity secure program

operand:

operand:

operand:

Input influences µCF
by changing PC value

PC

• Prove that only ISA specified control and data flows exist
• Detect non-ISA specified flows

Operand PC

µCFI - Microarchitectural Control-flow Integrity

19ISA = Instruction Set Architecture, PC = Program Counter

• Prove that only ISA specified control and data flows exist
• Detect non-ISA specified flows

Operand PCOne property

Two threat
models
captured

µCFI - Microarchitectural Control-flow Integrity

20ISA = Instruction Set Architecture, PC = Program Counter

• Prove that only ISA specified control and data flows exist
• Detect non-ISA specified flows

Operand PC

secret Information leakage

One property

Two threat
models
captured

µCFI - Microarchitectural Control-flow Integrity

21ISA = Instruction Set Architecture, PC = Program Counter

• Prove that only ISA specified control and data flows exist
• Detect non-ISA specified flows

Operand PC

secret Information leakage

attacker-
controlled

Control-flow hijack

One property

Two threat
models
captured

µCFI - Microarchitectural Control-flow Integrity

22ISA = Instruction Set Architecture, PC = Program Counter

• Prove that only ISA specified control and data flows exist
• Detect non-ISA specified flows

µCFI - Microarchitectural Control-flow Integrity

23

Source Sink

Information flow property

ISA = Instruction Set Architecture

• Prove that only ISA specified control and data flows exist
• Detect non-ISA specified flows

µCFI - Microarchitectural Control-flow Integrity

24

Source Sink

Information flow property

data flows

time & control flows

Information =

ISA = Instruction Set Architecture

• Prove that only ISA specified control and data flows exist
• Detect non-ISA specified flows

Operand PC

µCFI - Microarchitectural Control-flow Integrity

25

Source Sink

Information flow property
Information =

data flows

time & control flows

ISA = Instruction Set Architecture, PC = Program Counter

Formal Verification of Information Flow

Taint
logic

CPU

26
[1] F. Solt, B. Gras, K. Razavi, "CELLIFT: Leveraging Cells for Scalable and Precise Dynamic Information Flow Tracking in RTL", USENIX Security 2022

https://github.com/comsec-group/cellift-yosys

Information flow tracking with
taint logic – CellIFT [1]

taint = secret or attacker-controlled information

CellIFT

27

Taint logic (CellIFT [1]) tracks
information flows

Information flow tracking with taint logic – CellIFT [1]

taint = secret or attacker-controlled

[1] F. Solt, B. Gras, K. Razavi, "CELLIFT: Leveraging Cells for Scalable and Precise Dynamic Information Flow Tracking in RTL",
USENIX Security 2022

Taint
logic

CPU

Formal Verification of Information Flow

Taint
logic

Formal SVA
properties

CPU

28

Formal Verification of Information Flow

Taint
logic

Formal SVA
properties

Formal
model

checker

CPU

29

Formal Verification of Information Flow

Taint
logic

Formal SVA
properties

Formal
model

checker

CPU

Formal proof

Counter
example

30

Formally Verifying µCFI

31

REGISTERS

Operand

PC

ADDInstruction

Taint does not reach the PC

CPU + taint logic

taint = secret or attacker-controlled

PC = Program Counter

Formally Verifying µCFI

32

REGISTERS

Operand

PC

BNEInstruction

Taint reaches the PC

CPU + taint logic

taint = secret or attacker-controlled

PC = Program Counter

Branch Not Equal

Formally Verifying µCFI

33

REGISTERS

Operand

PC

BNEInstruction

Taint reaches the PC

µCFI violated??

CPU + taint logic

PC = Program Counter

Branch Not Equal

Instruction Classification

Control-influencing:
direct branches,
instructions with
exceptions, …

are expected
to influence
the program counter

34

beq t1, t2, 20

branch

target

34

PC

control control

If reg[t1] == reg[t2]
 Branch target = A
Else
 Branch target = B

Program Counter = reg[t1]
Program Counter = reg[t2]

Instruction Classification

Control-influencing:
branches,
instructions with
exceptions, …

are expected
to influence
the program counter

via control paths only

35

beq t1, t2, 20

branch

target

35

PC

control

Operand

data

PC

µCFI

control

If reg[t1] == reg[t2]
 Branch target = A
Else
 Branch target = B

CellDFT

CellIFT

3636

Taint
logic

CPU

CellIFT [1]

tracks information =

data,

control & timing flows

[1] F. Solt, B. Gras, K. Razavi, "CELLIFT: Leveraging Cells for Scalable and Precise Dynamic Information Flow Tracking in RTL", USENIX Security 2022

if reg[t1] == reg[t2]

Operand

information

PC

µCFI

Non-influencing:
arithmetic, logic, ...

CellDFT – Data Flow Tracking

3737

Taint
logic

CPU

CellDFT

only tracks

data flows

CellIFT [1]

tracks information =

data,

control & timing flows

[1] F. Solt, B. Gras, K. Razavi, "CELLIFT: Leveraging Cells for Scalable and Precise Dynamic Information Flow Tracking in RTL", USENIX Security 2022

New:

reg[t1] == reg[t2]

Operand

data

PC

µCFI

Identifying Insecure Instructions

38

REGISTERS

Operand

PC

ADDIInstruction CSRRW

Which instruction tainted the PC?

CPU + taint logic

Control and Status Register
Read Write

Identifying Insecure Instructions

39

REGISTERS

Operand

PC

Instruction

Check the program counter
taint after each instruction?

ADDI

CPU + taint logic

Identifying Insecure Instructions

CPU + taint logic

40

REGISTERS

Operand

PC

Instruction ADDI CSRRW

Check the program counter
taint after each instruction?

Control and Status Register
Read Write

Identifying Insecure Instructions

CPU + taint logic

41

REGISTERS

Operand

PC

Instruction

• addi's operand leaks, but violation is
associated with csrrw

• Checking program counter taint after
each instruction is imprecise

addi influences csrrw

Identifying Insecure Instructions

CPU + taint logic

42

REGISTERS

Operand

PC

Instruction

• addi's operand leaks, but violation is
associated with csrrw

• Checking program counter taint after
each instruction is imprecise

• A bug may be hidden by csrrw's
specified information flow

addi influences csrrw

43

µCFI - Verification Goals

For communication with software
engineers/tools:
• Security classification per instruction

44

µCFI - Verification Goals

For communication with software
engineers/tools:
• Security classification per instruction,
• surrounded by arbitrary,
 potentially insecure, instructions

45

µCFI - Verification Goals

To ease debugging:
• Identify the specific instruction that leaks

For communication with software:
• Security classification per instruction

46

µCFI - Verification Goals

For strong security guarantees:
• consider influences on younger instructions
• over arbitrary, infinitely long programs

To ease debugging:
• Identify the specific instruction that leaks

For communication with software:
• Security classification per instruction

Precise Taint Injection

CPU + taint logic

47

REGISTERS

Operand

PC

x

x = (taint) logic abstraction

Instruction

Precise Taint Injection

CPU + taint logic

48

REGISTERS

Operand

PC

Instruction ADD

• Controlled taint injection per instruction

• Via SystemVerilog Assumptions

start stop

taint

BNEMUL

Instruction
Under
Verification

x

x = (taint) logic abstraction

Precise Taint Injection

CPU + taint logic

49

REGISTERS

Operand

PC

Instruction

- Controlled taint injection per instruction
- Operand reading conditions automatically

generated via static design analysis
(custom Yosys[1] pass)

start stop

taint

[1]https://github.com/YosysHQ/yosys

ADD BNEMUL

Instruction
Under
Verification

Will the PC be
tainted?

Declassification of Architectural Paths

CPU + taint logic

50

REGISTERS

Operand

Instruction ADD BNEMUL

Instruction
Under
Verification

reg t1

Declassification of Architectural Paths

CPU + taint logic

51

REGISTERS

Operand

Instruction ADD

• Instruction result of 'add' forwarded to a
'branch' taints the PC.

BNEMUL

Instruction
Under
Verification

instruction
result

forwarded
data

PC

reg t1

Declassification of Architectural Paths

CPU + taint logic

52

REGISTERS

Operand

PC

Instruction ADD

• Declassification:
 Block taint propagation via architectural
 (forwarding and register writeback) paths

• Forwarded data considered as instruction input

• Yosys pass checks that declassified paths do
not reach the program counter

BNEMUL

Instruction
Under
Verification

instruction
result

forwarded
data x

x

reg t1

buffer

CPU + taint logic

53

REGISTERS

Operand

Instruction

No other microarchitectural flows are blocked

PC

Declassification of Architectural Paths

Verified
RISC-V
CPUs

PicoRV32 Kronos

Ibex
Scarv

used in

Root-of-Trust

Zk scalar
crypto
extensions

Microcontroller-class, in-order CPUs

State bits 3.2k 2.0k 2.5k 2.3k

Net bits 1.6k 1.4k 4.6k 6.7k

54

Verified
RISC-V
CPUs

PicoRV32 Kronos

Ibex
Scarv

used in

Root-of-Trust

Zk scalar
crypto
extensions

Microcontroller-class, in-order CPUs

State bits 3.2k 2.0k 2.5k 2.3k

Net bits 1.6k 1.4k 4.6k 6.7k

55

Cell- IFT / DFT IFT / DFT IFT / DFT IFT / DFT

time to PROVE 17 h / 8m 16m / 30s 9h / 10m 14.5h / 50 m

time to FAIL 1h / 8m 37s / 15s 2h / 3m 11m / 34m

Model checker: Cadence Jasper Formal Property Verification App

Verified
RISC-V
CPUs

56

PicoRV32 Kronos

Ibex
Scarv

Cell- IFT / DFT IFT / DFT IFT / DFT IFT / DFT

time to PROVE 17 h / 8m 16m / 30s 9h / 10m 14.5h / 50 m

time to FAIL 1h / 8m 37s / 15s 2h / 3m 11m / 34m

used in

Root-of-Trust

Zk scalar
crypto
extensions

Microcontroller-class, in-order CPUs

State bits 3.2k 2.0k 2.5k 2.3k

Net bits 1.6k 1.4k 4.6k 6.7k

PROVEN instructions 38 25 27 38 + all crypto instr.

VULNERABLE
instructions

3 (documented) 8 14 3 (known)

Two control-flow hijacks:

CVE-2023-51973

CVE-2024-44927

57

New Discovered Security Vulnerabilities
Constant time violation:

CVE-2023-51974

Kronos

Constant time violation + data leakage:

CVE-2024-28365

Control-flow hijack

Two control-flow hijacks:

CVE-2023-51973

CVE-2024-44927

58

New Discovered Security Vulnerabilities
KronosConstant time violation:

CVE-2023-51974

Ibex

Conclusion
• Introduced and formalized a generalized CPU security property

µCFI - Microarchitectural Control-flow Integrity

59

Conclusion
• Introduced and formalized a generalized CPU security property

• Automated verification method & implementation
• 4 open-source RISC-V CPUs verified
• Discovered 5 new vulnerabilities - 4 CVEs

µCFI - Microarchitectural Control-flow Integrity

60

Conclusion
• Introduced and formalized a generalized CPU security property

• Automated verification method & implementation
• 4 open-source RISC-V CPUs verified
• Discovered 5 new vulnerabilities - 4 CVEs

61

µCFI - Microarchitectural Control-flow Integrity

Thank you! Questions?

https://comsec.ethz.ch/ comsec-group/mucfi

Code:

kceesay@ethz.ch, flavien.solt@eecs.berkeley.edu

Information: Contact:

@K_Ceesay-Seitz, @FlavienSolt

mailto:kceesay@ethz.ch
mailto:flavien.solt@eecs.berkeley.edu

62

BACKUP

CellIFT Yosys [1] pass

63

HDL RTLIL

∀ cells (flip flops,
logic cells, …):
• Duplicate* in-/outputs for taint tracking
• Connect them with cell-type dependent

taint tracking logic

*it is possible to add multiple independent taint instrumentations. Each in-/output gets a taint representation
per instrumentation.

[1] Yosys Open SYnthesis Suite - https://github.com/YosysHQ/yosys

[2] F. Solt, B. Gras, K. Razavi, "CELLIFT: Leveraging Cells for Scalable and Precise Dynamic Information Flow Tracking in RTL", USENIX Security 2022

Taint
logic

HDL

a) State-holding
cells

b) Combinational
block

c) Gate-level
output of Yosys

[2]

https://github.com/YosysHQ/yosys

Instruction classification

Non-influencing:
arithmetic, logic, ...

Control-influencing:
branches, exceptions

Value-influencing:
jumps

64

bne x1, x2, 20

add x4, x5, x6

branch
target

PC

64

PC

control

jalr ra, x1, 80

Operand PC

Operand

data

PC

µCFI

jump
target

PC

data

control

data

information

information

Taint Start Condition
Update Condition Yosys Pass

65

Read-from Condition = the condition in which a signal is
updated with a chosen signal's value.

UC
Yosys
pass

Operand's register
data read signal

Condition in which
the operand's register
data read signal is updated
with register dataRegister file name

CPU code (PicoRV32): Generated Read-from Condition:

Taint start

Taint Stop Condition
Update Condition Yosys Pass

66

Update Condition (UC) = the condition in which a signal is
updated with another value than its own previous value.

Taint stop UC
Yosys
pass

Operand's register
data read signal

Condition in which
the read data MAY be new

For example:
• enable condition of a flip flop
• '1' (True) for continuous

assignments

taint

Precise Taint Injection Conditions

67

- Controlled taint injection per instruction

start stop

ADD BNEMUL

Instruction
Under
Verification

Sample Instruction Word (IW) in
formal setup

IW == IUV and taint start condition

start

stop

Taint stop condition

Potentially
taint
multiple
times per
instruction

Simple & precise
counter examples

Update Condition (UC) / Read-from Condition (RC)
Yosys Pass

68

Update Condition UC(s)

s ... signal

UC(s) = 1 (for UC)
 = 0 (for RC)

a,b ... other internal signals
'past' = custom attribute

UC(s) = UC(a)

UC(s) = past (UC(a))

UC(s) = condition && UC(a) || !condition && UC(b)

UC(s) = past(enable && (UC(a))

UC(s) = 1

Find Forwarding Multiplexer Yosys Pass

69

• Automatically identifies forwarding multiplexers
• Checks declassification precondition: all

outgoing paths of declassified signals reach
another declassified signal or data source
without passing PC

instruction
input data

forwarded
data output

Operand's register
data read signal

x
x

1. Traverse outgoing paths of
forwarded data output and
check declassification
precondition

2. If a mux uses forwarded data
output, back-traverse
multiplexers' other input's
driving logic.

3. Is it directly assigned with
operand's register data read
signal?
o No: continue at mux

output
o Yes: Forwarding mux

found --> return mux
select signal

mux = multiplexer

x

x

CPU + taint logic

70

REGISTERS

Operand

PC

Instruction

Forwarded data considered as instruction input:

• Allow operand taint to propagate if instruction
reads from forwarded data

instruction
result

forwarded
data

Formal verification of information flow

ADD BNEMUL

Instruction
Under
Verification

Taint injection assumptions

71

Introducing
µCFI - Microarchitectural Control-flow Integrity

Microarchitectural control flow (µCF)

Program
Counter
(PC)

0x80000004 0x80000008 0x80001000

Operand PC

ISA = Instruction Set Architecture 72

µCFI only allows
explicitly ISA specified
data dependencies
of the µCF

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Formal Property Verification
	Slide 7: Formal Property Verification
	Slide 8: Formal Property Verification
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Formal Verification of Information Flow
	Slide 27: CellIFT
	Slide 28: Formal Verification of Information Flow
	Slide 29: Formal Verification of Information Flow
	Slide 30: Formal Verification of Information Flow
	Slide 31: Formally Verifying µCFI
	Slide 32: Formally Verifying µCFI
	Slide 33: Formally Verifying µCFI
	Slide 34: Instruction Classification
	Slide 35: Instruction Classification
	Slide 36: CellIFT
	Slide 37: CellDFT – Data Flow Tracking
	Slide 38: Identifying Insecure Instructions
	Slide 39: Identifying Insecure Instructions
	Slide 40: Identifying Insecure Instructions
	Slide 41: Identifying Insecure Instructions
	Slide 42: Identifying Insecure Instructions
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Precise Taint Injection
	Slide 48: Precise Taint Injection
	Slide 49: Precise Taint Injection
	Slide 50: Declassification of Architectural Paths
	Slide 51: Declassification of Architectural Paths
	Slide 52: Declassification of Architectural Paths
	Slide 53: Declassification of Architectural Paths
	Slide 54: Verified RISC-V CPUs
	Slide 55: Verified RISC-V CPUs
	Slide 56: Verified RISC-V CPUs
	Slide 57
	Slide 58
	Slide 59: Conclusion
	Slide 60: Conclusion
	Slide 61: Conclusion
	Slide 62
	Slide 63: CellIFT Yosys [1] pass
	Slide 64: Instruction classification
	Slide 65: Taint Start Condition Update Condition Yosys Pass
	Slide 66: Taint Stop Condition Update Condition Yosys Pass
	Slide 67: Precise Taint Injection Conditions
	Slide 68: Update Condition (UC) / Read-from Condition (RC) Yosys Pass
	Slide 69: Find Forwarding Multiplexer Yosys Pass
	Slide 70: Formal verification of information flow
	Slide 71: Taint injection assumptions
	Slide 72

