

Magnet system of the new AD electron cooler

Luke von Freeden

7 March 2025

Introduction

Overview of the AD cons project

Magnet system in electron cooling

Functional specification of 2023

Design of this electron cooler

Magnetic measurement

Project roadmap

The AD cooler consolidation project

Present AD electron cooler magnet system built in 1978 used for in 3 experiments: ICE \rightarrow LEAR \rightarrow AD

Major breakdowns of collector in 2018 lead to consolidation review in 2019

No spares for a most of the magnets, limited design information, original manufacturer defunct since 2000.

Review identified full-system replacement as best way to minimise down-time. Opportunity to upgrade the system to improve cooling performance.

Magnet system of an electron cooler

Electrons produced by gun are trapped onto field lines

Magnetic field guides the electrons from gun to collector

Any transverse momentum from gun \rightarrow spiraling around field line

Field quality in the drift

Electrons spiral around flux lines

- \rightarrow apparent temperature to antiprotons combination of temp and B
- \rightarrow B flux lines must be flat in drift.

Field quality in electron cooler

$$q_f = \left| \frac{B_{\perp}}{B_{||}} \right|$$

$$\operatorname{rms} q_f = \sqrt{\frac{1}{V} \iiint_V \left(\frac{B_{\perp}}{B_{||}}\right)^2 dV}$$

Image remixed from WikiHelper2134 under CC BY-SA 3.0

Adiabatic expansion

For a charged particle in a magnetic field, magnetic moment is invariant:

$$\mu = \frac{mv_{\perp}^2}{2B}$$

Reducing $B \rightarrow$ reduction in transverse K.E. (moved to parallel)

$$W_{\perp,2} = W_{\perp,1} \frac{B_1}{B_2}$$

Adiabatic condition: the rate of change of B is small relative to the cyclotron wavelength.

 $\lambda_{\rm c} = \frac{2\pi\sqrt{2m_{\rm e}E_{\rm e}}}{2m_{\rm e}E_{\rm e}}$

$$\chi = \frac{\lambda_{\rm c}}{B} \left| \frac{\mathrm{d}B}{\mathrm{d}z} \right|$$

Typically, $\chi < 0.5$ is acceptable.

Image remixed from WikiHelper2134 under CC BY-SA 3.0

Functional specification

	Present	This Spec.
AD ring length [m]	182.43	182.43
Drift magnet length [m]	~ 1.5	~ 1.5
Drift magnet field [G]	600	$\sim 600^*$
Cooling region length [m]	~ 1	≥ 1
Cooling region radius = r _{e-beam} [mm]	25	≥ 25
Cooling region $\max(B_{\perp}/B_{\parallel})$	10^{-3}	$\sim 10^{-4}$
Cooling region rms (B_\perp/B_\parallel)	n.a.	$\sim 10^{-5}$
Toroid field [G]	600	$\sim 600^*$
Toroid angle ϕ_0 [rad]	0.6283	n.a.‡
Toroid radius r _{tor} [m]	1.133	n.a.‡
Toroid integrated transverse field [Gm]	~ 160	$\lesssim 160$
Gun magnetic field [G]	600	n.a.‡
Gun perveance [µP]	0.58	n.a. ^{‡†}
Cathode radius [mm]	25	n.a.‡
Cooling region e^- beam $k_B T_\perp$ [meV]	100	$\lesssim 100$
Cooling region e^- beam $k_B T_{\parallel}$ [meV]	_	$\lesssim 1$
e^- beam energy stability $[\Delta E/E_0]$	-	$\sim 10^{-5}$
e^- beam intensity I_0 [A]	up to 2.4	up to 4.8
e^- beam intensity stability [$\Delta I/I_0$]	_	$\sim 10^{-4}$
e^- beam max relative losses [$\delta I/I_0$]	-	$\sim 10^{-5}$
e^- beam start/stop time [s]	_	$\ll 1$
BPMs e^- /pbar relative accuracy [µm]	—	$\lesssim 100$
Vacuum pressure in cooling section (torr)	2×10^{-11}	$\ll 10^{-11}$
E-cooler availability during physics	—	99%

D. Gamba, C. Carli, L. Ponce, A. Rossi, G. Tranquille, L. Varming Joergensen Functional specification of the new electron cooler, Sept. 2022 EDMS 2772724

Image courtesy of V. Maire and N. Chritin EN-MME

Image courtesy of V. Maire and N. Chritin EN-MME

Main field along e⁻ trajectory

Main field along e⁻ trajectory

Field errors in the drift

Without correction, relative error $> 5 \times 10^{-3}$ in GFR (Ø60 × 1000 mm³)

Strong solenoid component due to drift to TF gap

Skew dipole component due to pollution from TF region

Normal dipole component due to slight up-down asymmetry in shield

Higher orders << 1 × 10⁻⁴

Field correction scheme

ÉRN

Setting the correction currents via least squares

Results of the field correction

Table 1: Final current in the design of the correction coils in Ampere.

Туре	Field direction	Coil position							
		ο	1	2	3	4	5	6	7
Solenoid	Axial	10.926							10.926
Skew	Horizontal	7.026	-0.623	-0.260	-0.282	-0.210	-0.250	0.074	-7.632
Normal	Vertical	0.025	0.208	0.134	0.124	0.154	0.246	0.416	1.408

At least 24% (1.5×10^{-3}) current margin in all coils

What that means for the AD

w/ thanks to D. Gamba

Figure 10: Simulated transverse emittance as a function of time during cooling at 300 MeV/c with I_{e^-} of 2.4 A for a reference particle and for different drift field quality: the ideal case, the functional/conceptual specification [2], this engineering specification, and the present electron cooler. Courtesy of D. Gamba.

Steering scheme

Constant offset due to central flux line not exactly following the reference trajectory

		Gun to drift centre	Drift centre to collector arm
Uncorrected difference V	[mm]	$-17.1\beta\gamma+2.0$	$-16.5eta\gamma-1.7$
Uncorrected difference H	[mm]	4.8	-5.1
Steering margin V @ 10 A (18 A)	[mm]	13.5 (21.5)	9.8 (17.8)
Steering margin H @ 10 A (18 A)	[mm]	5.3 (13.3)	4.6 (12.6)

Offset with accelerating voltage cross drift from centripetal forces acting on the electrons in TF region

Figure 11: Particle tracking without steering for different acceleration voltages corresponding to the cooling plateaus at 100 MeV c_0^{-1} , 300 MeV c_0^{-1} , and 500 MeV c_0^{-1} .

mage courtesy of V. Maire and N. Chritin EN-MME

x x

20

Measurement, alignment and correction

Measurement and correction performed on surface

Tolerance of current and survey \rightarrow field quality change between correction in B. 311 and installation in tunnel < 3 × 10⁻⁵

Fiducialisation of all magnetic axes allows direct spare substitution

Development of translating flux meter

w/ thanks to M. Pentella, C. Petrone, and TE-MSC-MMM

Novel translating flux meter developed through research in TE-MSC-MMM

Two key outputs yielding very promising results:

- PCB design optimised for field errors in 60 mT
- 3D cylindrical harmonic description

$$B_{z}(r,\varphi,z) = \sum_{n=0}^{\infty} I_{0}(\lambda_{n}r) \left[F_{0,n} \cos(\lambda_{n}z) - E_{0,n} \sin(\lambda_{n}z) \right]$$

$$+ I_1(\lambda_n r) \left[A_{1,n} \cos(\varphi) + B_{1,n} \sin(\varphi) \right] \left[F_{0,n} \cos(\lambda_n z) - E_{0,n} \sin(\lambda_n z) \right]$$

$$\Delta x = \frac{1}{\frac{\partial B_z}{\partial r}|_{m=0}} \begin{pmatrix} \frac{1}{\pi} \int_0^{2\pi} \Delta B_z(r,\varphi,z) \cos(\varphi) \, \mathrm{d}\varphi \end{pmatrix} \qquad \mathsf{M}$$
$$\Delta y = \frac{1}{\frac{\partial B_z}{\partial r}|_{m=0}} \begin{pmatrix} \frac{1}{\pi} \int_0^{2\pi} \Delta B_z(r,\varphi,z) \sin(\varphi) \, \mathrm{d}\varphi \end{pmatrix} \qquad \mathsf{has}$$

Magnetic axis coordinates estimated from the dipole term $\Delta B_z(r, \varphi, z)$ (feed-up of the harmonics).

CERN

Translating flux meter proof of concept

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 32, NO. 6, SEPTEMBER 2022

Induction-Coil Measurement System for Normal- and Superconducting Solenoids Carlo Petrone[®], Stefano Sorti, Eivind Dalane, Bertrand Mehl, and Stephan Russenschuck[®]

Flux meter applied to 60 mT solenoid correction

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 34, NO. 5, AUGUST 2024

9001404

Alignment of a Solenoid System by Means of a Translating-Coil Magnetometer M. Pentella[©], V. Kjellqvist, C. Petrone[©], S. Russenschuck[©], and L. von Freeden

Project roadmap

Contract 1 – 11 solenoids

- 1+1 Drift, 4+1 Arm, 1+1 expansion, 1+1 squeeze
- Launched with Krämer Aug 24
- Batches to be delivered Nov 25 to Aug 26
- Free issued shields and conductor reduced total price

Contract 2 – TF region coils

- 6+1 small racetracks, 6+1 large racetracks, 4+1 steerers
- Launched with Scanditronix Sept 24
- Manufacturing file accepted
- Batches to be delivered Aug 25 to Dec 25

A new AD electron cooler magnet system has been designed

The new design gives at least a factor 5 improvement in field quality

The procurement is ongoing, first coils mid this year with installation in LS3

Further reading

Functional specification – EDMS 2772724

Engineering specification – EDMS 3014577

Design report and MT29 paper to follow

home.cern