

FCC-ee positron linac design (Revised version)

Y. Zhao, A. Latina, CERN

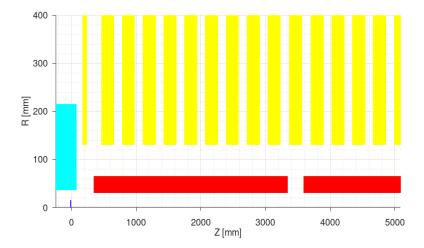
FCC-ee WP1 meeting

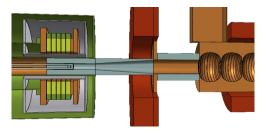
06 Dec 2024

Revision

- Compared with my presentation on WP1 meeting on 06/12/2024:
 - A bug is fixed in the quadrupole simulation, that the reference energy or strength is not properly set (constant instead of increasing with energy) in S2 section
 - Mainly the beam spot size and beta function are affected. The design, yield, emittance, etc. are not affected much

Positron production

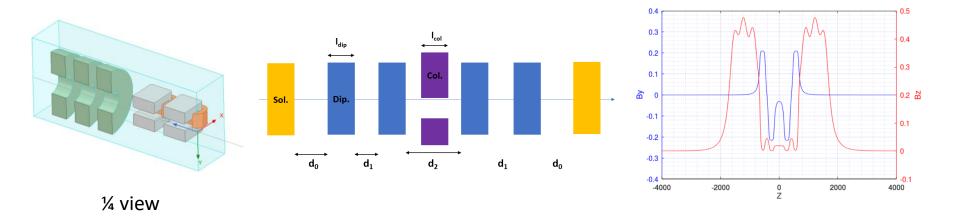

- Electrons
 - E = 2.86 GeV. σ_{E} / E = 0.5%⁺. σ_{z} = 1 mm
 - $\sigma_{x,y} = 1 \text{ mm. } \epsilon_{n,x,y} = 4 \text{ mm}^* \text{mrad}^*$. Emittance can be larger or smaller, but the impact on positron yield is negligible
- Target
 - Conventional scheme (i.e. cylindrical shape, single amorphous tungsten)
 - Radius: R = 15 mm. Radius can be reduced to the minimum of 5 mm
 - Thickness: W = 15 mm


⁺ Numbers suggested by S. Bettoni from e⁻ linac simulation

Capture section

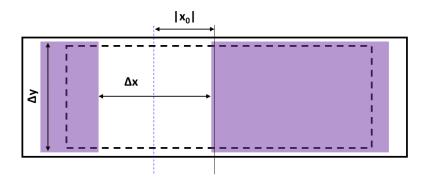
AMD

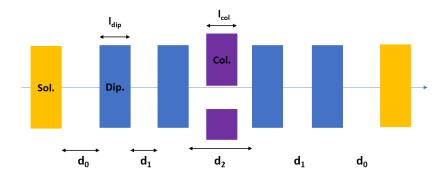
- HTS solenoid. 2D field. $B_0 \simeq 14.94$ T
- Target exit position: 40 mm (w.r.t. HTS B₀)
- Matching solenoid
 - L = 72 mm. 3D field (Maxwell3D)
 - B₀ ~ 0.245 T
 - Center position: 244 mm (w.r.t HTS B₀)
- Shielding
 - Tapered aperture (optimized by WP3). Impact on yield is negligible
- Capture Linac (CL)
 - RF structure length: 3 m. Iris radius: a₀ = 30 mm (constant)
 - N = 6, G = 13.3 MV/m, φ = [235 231 233 251 286 257]° (reoptimized by WP3)
 - Regular solenoids: L = 200 mm. 3D field (Maxwell3D). $B_0 \sim 0.31$ T. N = 9 (per structure)

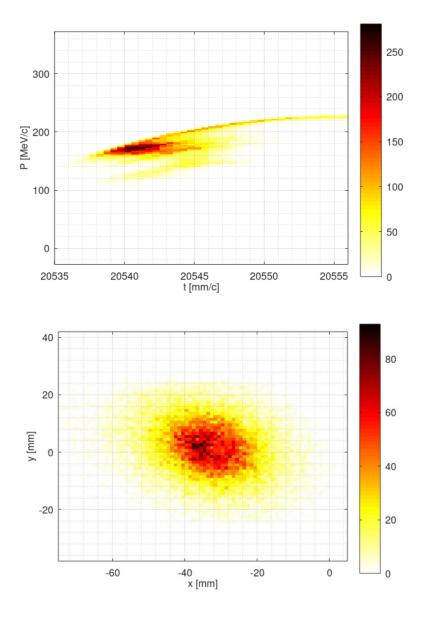


M. Daugaard

Chicane


- Chicane "V2" (Collaboration with R. Zennaro)
 - Combined simulation of chicane (four dipoles) and 6 neighboring solenoids. Therefore, parameters (lengths, apertures, distances) are fixed by design
 - Dispersion closed by increasing 2% the current of middle dipoles
 - 3D field (Maxwell3D)
 - Dipole yoke length: I_{dip} = 180 mm
 - Apertures of beam pipe: $\Delta x = 150 \text{ mm}$, $\Delta y = 50 \text{ mm}$ (yoke aperture is 70 mm)
 - Distances between dipole yokes: d1 = 125 mm, d2 = 350 mm
 - Distance between solenoid and dipole yoke: d0 = 125 m



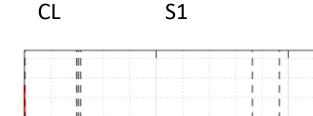

Collimator

• Collimator

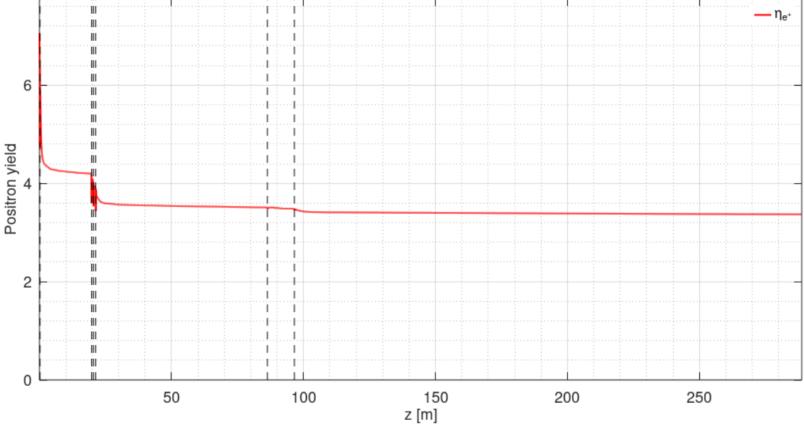
- Length: I_{col} = 120 mm
- Apertures: Δx = 70 mm, Δy = 50 mm
- X offset: **x**₀ = -**35 mm**

Positron linac design

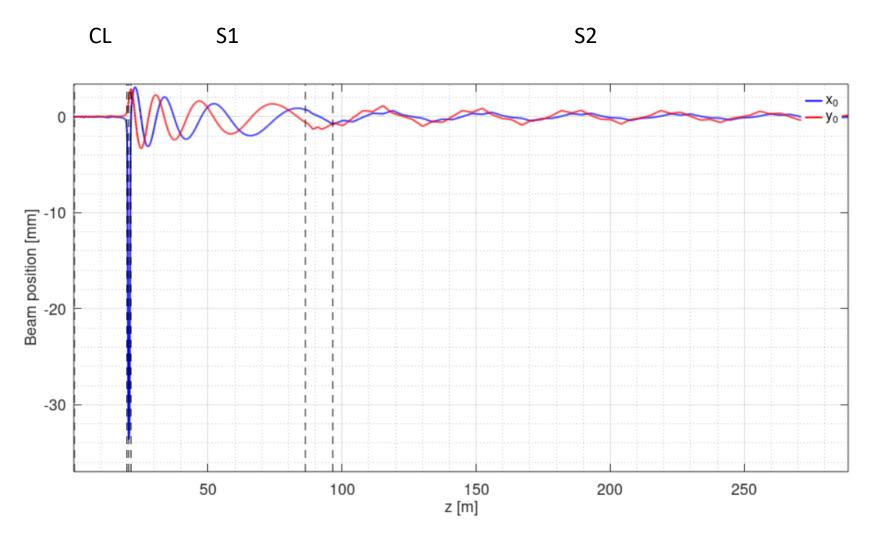
- Section 1 (S1)
 - Same structure and solenoids as Capture Linac
 - N = 20, G = 13.3 MV/m, ϕ = -10° (optimized for max. yield)
 - Average energy (around bunch core) at exit: 931.7 MeV
- Section 2 (S2)
 - Same structure as Capture Linac
 - Periodic FODO cells. 2 structures per FODO cell. FODO phase advance: 76.345° (optimized for min. beta)
 - Quadrupole length: 0.4 m. Quadrupole-Structure distance: 0.15 m. Quadrupole spacing: 3.3 m
 - N = 52, G = 12.756 MV/m, ϕ = 5° (optimized for max. yield)
 - Average energy (around bunch core) at exit: 2.866 GeV

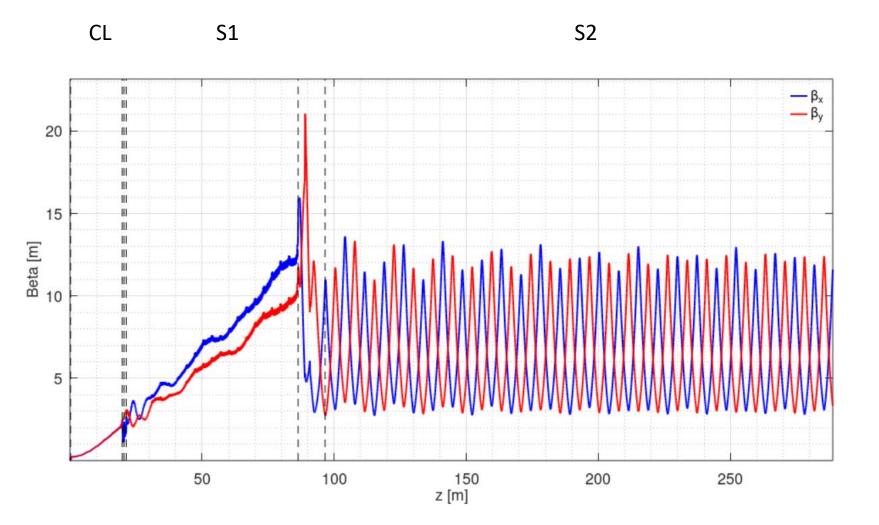

Parameter	Value
Collective effects considered	Space charge; Short-range wakefield
Primary electron bunch charge assumed for collective effects [nC]	5.0
Bunch length (around bunch core) at PL exit [mm]	2.88
Energy spread (around bunch core) at PL exit [%]	0.97
X, Y spot sizes (around bunch core) at PL exit [mm]	5.27, 2.78
Total positron yield (all positrons) at PL exit	3.37
Expected DR accepted yield with ±2% energy acceptance at PL exit	2.97
Normalized X, Y emittances (accepted positrons) at PL exit [mm*rad]	13.2, 13.1
Geometric X, Y emittances at (accepted positrons) PL exit [mm*mrad]	2.36, <mark>2.34</mark>

Positron linac power consumption


• **Power consumption in Positron Linac** (based on discussion with J. Raguin)

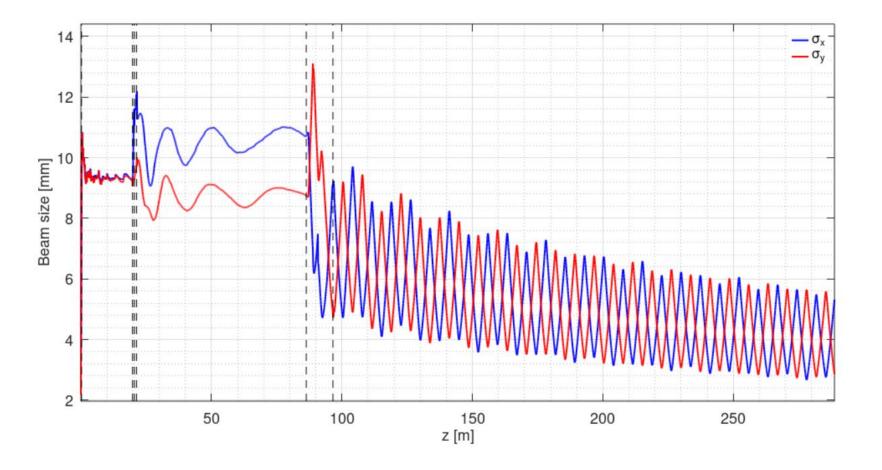
Parameter	Value
Average gradients in S1, S2 [MV/m]	~13
Number of structures per RF module	4
Number of structures in S1, S2 (w/ spare module)	[20, 52+4]
Total number of RF modules (w/ spare module)	5+13+1 = 19
Total number of solenoids	20*10 = 200
Total number of quadrupoles	~52+4 = 56
RF power consumption [MW]	19*0.19 = 3.61
Solenoid power consumption [MW]	200*0.016 = 3.20
Quadrupole power consumption [MW]	Neglected
Total power consumption [MW]	6.81


Yield evolution along z


S2

Beam position evolution along z

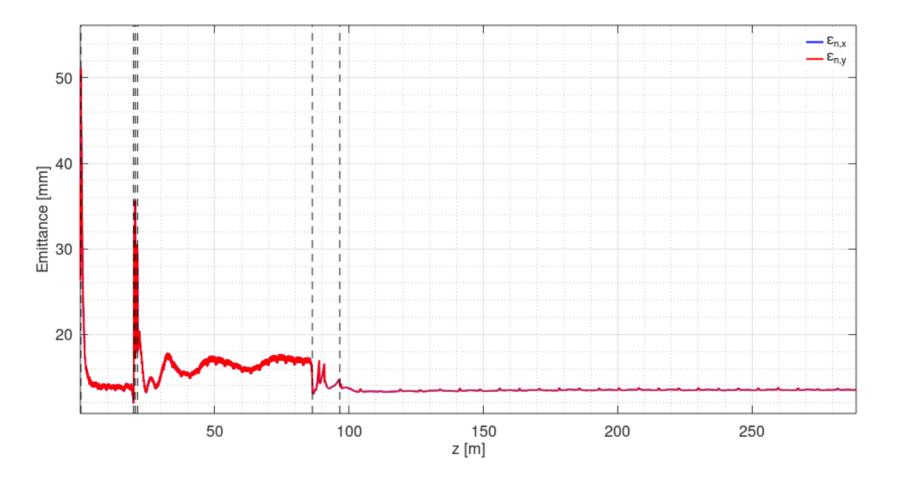
Beam beta function evolution along z



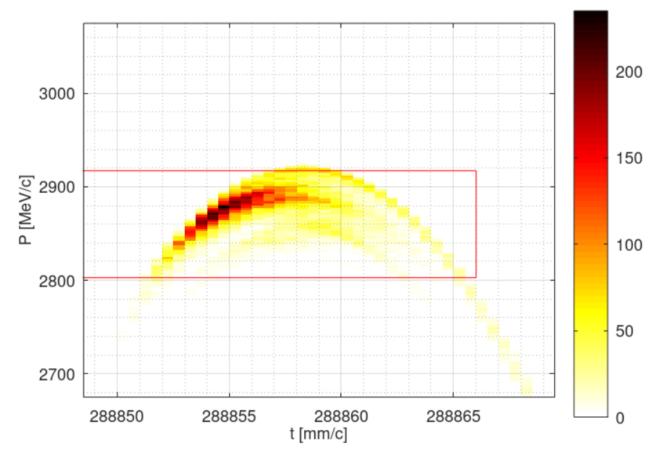
Beam spot size evolution along z

CL

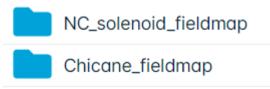
S1


S2

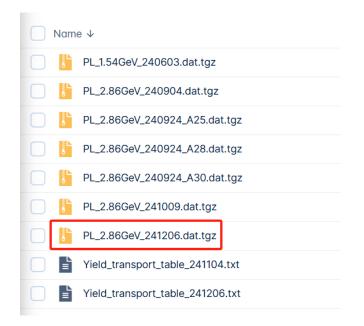
Normalized emittance evolution along z


CL S1

S2


Longitudinal phase space

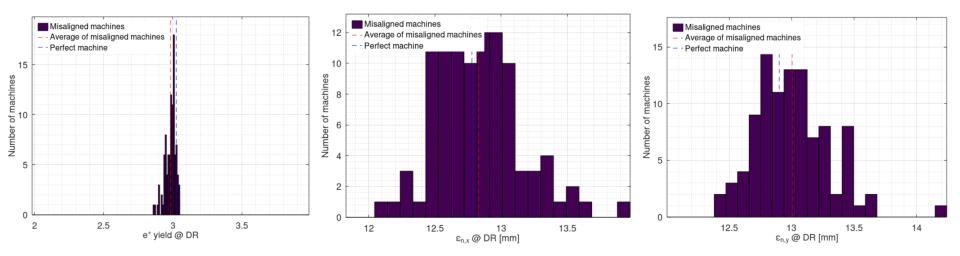
- At PL exit
 - Total yield: 3.37
 - \circ Yield with cuts (2.86 GeV ± 2% in energy, ±10 mm/c time): 2.97



Data sharing

• Fieldmaps uploaded to FCC-ee CERNBox / task 3.1

 Positron distribution at Positron Linac exit for WP4 uploaded to my personal <u>CERNBox / FCCee / PositronLinacOutput</u>



Imperfections

- Imperfections considered
 - **Position** error (x, y): $\sigma = 100$ um for all elements
 - Angular error (roll, pitch, yaw): σ = 100 urad for all elements, except that σ = 200 urad for all NC solenoids and dipoles
 - Magnatic **strength** error: $\sigma = 0.1\%$ for all magnets
 - RF gradient error: σ = 1% for all RF structures
 - RF **phase** error: σ = **0.1**° for all RF structures
 - Beam **position jitter** (x, y): $\sigma = 100$ um for e⁺ beam from target
 - Beam **angular jitter** (x', y'): $\sigma = 100$ urad for e⁺ beam from target

Imperfections

- 100 random machines with imperfections
- Compared with perfect machine:
 - Average DR accepted e+ yield reduction: $1.3\%^{\dagger}$ (2.97 \rightarrow 2.93)
 - Average normalized X / Y emittance increase: 0.4% / $0.8\%^{\dagger}$ (13.2 / 13.1 mm \rightarrow 13.3 / 13.2 mm)
- Impact of considered imperfections is negligible

⁺ Assuming the same effects as before. Updates in progress. Conclusions should be the same.

Backup