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Event Generators 

•  “Current” general purpose event generators: 
–  Pythia8 
–  Herwig++ 
–  Sherpa 

•  “Legacy” support for previous generation: 
–  Pythia6 
–  HERWIG(+Jimmy) 

•  Many specialized codes 
–  MC@NLO, Powheg 
–  VINCIA, Ariadne, Cascade, PhoJet, … 
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Related programs 

•  Matrix element tools 
–  Madgraph, ALPGEN, HELAC, CompHEP, … 
–  SanC, Grace, … 
–  MCFM, NLOJET++, BlackHat, Rocket, … 
–  aMC@NLO, PowHEG Box, … 

•  Secondary decay packages 
–  TAUOLA, PHOTOS, EvtGen, … 

•  Validation/tuning/visualization tools 
–  Rivet, Professor, mcplots 
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Hard process generation 
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•  FeynRules 
•  Towards 

automated loop 
calculation 

•  Tree-level matrix element automation: a solved 
problem 
–  But efficiency improvements and generalizations 

always being made 
–  Matching to parton showers without double-counting 

•  MLM built in to Madgraph, Alpgen 
•  CKKW-L automated in Sherpa, Herwig++ 

–  Crucial role of colour structure 
•  Large Nc description good enough for precision physics? 



NLO hard process generation 

•  How to combine NLO calculation with parton 
shower without double-counting real emission? 

•  Solved by MC@NLO method: 
–  Carefully extract analytical expression for parton 

shower emission 
–  Use it as subtraction term for NLO calculation 
–  Gives finite (but not positive definite) weights for “real” 

and “virtual” phase space points 
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MC@NLO 

•  Available for a wide variety of processes and 
very successfully used 

•  But… 
–  Negative weights 
–  Tied to a specific event generator algorithm 
–  Inclusively corrects an emission to the next-order tree 

level matrix element (not necessarily hardest) 
–  Is not able to correct major deficiencies in hard 

emission distribution of parton shower 
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MC@NLO 

•  Is not able to correct major deficiencies in hard emission 
distribution of parton shower 

THLPCC11 Mike Seymour 

Alioli, Nason, Oleari & Re, gg→H, JHEP 0904(2009)002 



MC@NLO 

•  Is guaranteed to reproduce next-order tree-level matrix 
element 
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Alioli, Nason, Oleari & Re, gg→H, JHEP 0904(2009)002 



MC@NLO 

•  Is guaranteed to reproduce next-order tree-level matrix 
element 
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POWHEG 

•  Nason, JHEP 0411 (2004) 040 

•  Born configurations with NLO weight 
•  Hardest emission: exponentiated tree level ME 

–  (Almost always) positive weight 
–  Independent of shower algorithm 
–  Hardest emission always given by ME 

•  times inclusive K factor 
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Truncated shower 
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•  Self-consistent implementation requires either 
–  shower is kt ordered (so POWHEG emission would 

have been first anyway) 
–  or truncated shower is added (giving emission off 

internal lines ‘before’ hardest one) 
–  Herwig++ status: 

•  Working implementation for internal Powheg processes 
•  General implementation exists in principle but not released 



POWHEGs 

•  POWHEG method has become the method of 
choice for Sherpa and Herwig collaborations 
–  pp  γ/W/Z/H/WH/ZH/WW/WZ/ZZ 
–  DIS, pp  VBF  Hjj "

•  POWHEG BOX (http://powhegbox.mib.infn.it/, Alioli, 

Hamilton, Nason, Oleari and Re) is a standalone 
implementation for even more processes, incl. 
–  pp  dijets, ttbar 
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Internal vs external Powhegs 
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Internal vs external Powhegs 

•  Should agree exactly (up to corrections from 
truncated shower) 

•  Disagree by more than Pythia vs Herwig 
•  Not understood (not truncated shower) 
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MENLOPS 

•  Hamilton & Nason, JHEP 1006 (2010) 039 
•  Höche et al, JHEP 1104 (2011) 024 
•  Giele, Kosower & Skands, Vincia… 

•  Combines multi-jet matching with NLO matrix 
elements normalization from lowest-multiplicity 
cross section 

•  Step towards NLO multi-jet matching 
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Parton showers 

•  Colour coherence long established as essential 
–  angular-ordered parton showers (Herwig++ default) 
–  kt-ordered dipole/antenna showers (Ariadne, Pythia6 

default, Pythia8, Sherpa, Herwig++ experimental, …) 
–  Dokshitzer & Marchesini (JHEP 0903 (2009) 117) cast 

some doubt on the validity of dipole showers 
•  Nagy & Soper, JHEP 0905 (2009) 088 
•  Skands & Weinzierl, Phys. Rev. D79 (2009) 074021 
•  Plätzer & Gieseke, JHEP 1101 (2011) 024 
•  Giele, Kosower & Skands, arXiv:1102.2126 

   conclude that problem was E-ordering, not dipoles 
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Parton showers 

•  Crucial role of colour structure of hard process 
–  e.g. qq~->qq~ 

•  Corrections suppressed by ~1/Nc
2 interjet region 

–  shouldn’t we worry about them too? 
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New approaches 

•  HEJ (Andersson & Smillie) resums rapidity-
enhanced (i.e. small-x) terms 

•  Can be combined with dipole shower (+Lönnblad) 
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New approaches 

•  HEJ (Andersson & Smillie) resums rapidity-
enhanced (i.e. small-x) terms 
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•  important for Higgs 
production [Andersen, Campbell 

& Höche, arXiv:1003.1241] 
•  mean no. of jets as a 

function of rapidity 
distribution between 
most forward and most 
backward 
–  c.f. VBF cuts/rapidity veto 



New approaches 

•  Kusina, Jadach, Skrzypek & Slawinska: proof of 
principle of exclusive parton evolution with NLO 
kernels 

•  Ward: Herwiri: Herwig(++) evolution with IR-
resummed kernels 

•  Nagy & Soper, Sjödahl: off-diagonal colour 
evolution – exact in colour 
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Hadronization 

•  Basic string and cluster models ~ unchanged in 
25 years 
–  Many small improvements motivated by deeper 

understanding/better data 
•  e.g. baryon production models 

•  Pythia 8: BSM hadronization scenarios 
–  R-hadrons (confined long-lived spartons) 
–  Hidden sector hadronization 
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BSM Physics 3: Hidden Valley (Secluded Sector)
What if new gauge groups at low energy scales, hidden by
potential barrier or weak couplings? (M. Strassler & K. Zurek, . . . )

Complete framework implemented in PYTHIA:
! New gauge group either Abelian U(1) or non-Abelian SU(N)

! 3 alternative production mechanisms
1) massive Z′: qq → Z′ → qvqv
2) kinetic mixing: qq → γ → γv → qvqv
3) massive Fv charged under both SM and hidden group

! Interleaved shower in
QCD, QED and HV sectors:
add qv → qvγv (and Fv)
or qv → qvgv, gv → gvgv,
which gives recoil effects
also in visible sector

L. Carloni & TS, JHEP 09 (2010) 105;
L. Carloni, J. Rathsman & TS, JHEP 04 (2011) 091
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! Hidden Valley particles may remain invisible, or . . .

! Broken U(1): γv acquire mass, radiated γvs decay back
γv → γ → ff with BRs as photon (⇒ lepton pairs!)

! SU(N): hadronization in hidden sector, with full string fragmentation,
permitting up to 8 different qv flavours and 64 qvqv mesons,
but for now assumed degenerate in mass, so only distinguish
– off-diagonal, flavour-charged, stable & invisible
– diagonal, can decay back qvqv → ff

Even when tuned to same average activity, hope to separateU(1) and SU(N):
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Secondary particle decays 

•  Previous generations typically used external 
packages, e.g. TAUOLA, PHOTOS, EVTGEN 

•  Sherpa & Herwig++ contain at least as complete 
a description in all areas… 

•  without interfacing issues (c.f. τ spin) 
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Tau Decays 

Mass spectrum of ππ in τππν
τ
 for various models and example of mass distribution in τ5πν

τ
 comparing 

Herwig++ and TAUOLA. 



Monte Carlo for the LHC Physics at LHC 2010 
DESY, Hamburg, 7–12 June 2010 
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DKππ	



Comparison of Herwig++ and EvtGen implementations of the fit of Phys. Rev. D63 (2001) 092001 
(CLEO). 



Monte Carlo for the LHC Physics at LHC 2010 
DESY, Hamburg, 7–12 June 2010 
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2. Progress in underlying event/soft 
inclusive physics 
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The Basics: event classes 

‘Minimum bias’ collision and underlying event 
 
 
 
 
 
 
Minimum bias = experimental statement 
Models = zero bias? i.e. inclusive sample of all inelastic 

(non-diffractive?) events 
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The Basics: event classes 
‘Soft inclusive’ events and the underlying event 
 
 
 
 
 
 
How similar are they? 
Fluctuations and correlations play crucial role 
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Fluctuations and correlations 

log σ	



pt 

Steep distribution ) 
small sideways shift = 
large vertical 

Rare fluctuations can 
have a huge influence 

1/ptn → nth moment 

) corrections depend 
on physics process 



For small pt min and high energy inclusive parton—parton 
cross section is larger than total proton—proton cross 
section. 

THLPCC11 Mike Seymour 

The Basics: Multiparton Interaction Model 
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The Basics: Multiparton Interaction Model 
For small pt min and high energy inclusive parton—parton 

cross section is larger than total proton—proton cross 
section. 

 More than one parton—parton scatter per proton—proton 

Need a model of spatial distribution within proton 
 Perturbation theory gives you n-scatter distributions 

Sjöstrand, van Zijl, 
Phys. Rev. D36 
(1987) 2019   
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Matter Distributions 

•  Usually assume x and b factorize (→ see later) 

•  and n-parton distributions are independent (→ see soon) 

⇒ scatters Poissonian at fixed impact parameter 
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Colour correlations 

Can have a big 
influence on final 
states 

→ see later 
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The Herwig++ Model (formerly known as Jimmy+Ivan) 

•  Take eikonal+partonic scattering seriously 

•  given form of matter distribution ⇒ size and ¾inc 

•  too restrictive ⇒ 

•  ⇒ two free parameters 

Bähr, Butterworth & MHS, JHEP 0901:067, 2009 
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Final state implementation 

•  Pure independent perturbative scatters above PTMIN 

•  Gluonic scattering below PTMIN with total σsoft,inc     
and Gaussian distribution in pt 

•  dσ/dpt continuous at PTMIN 

→  possibility that entire 
process could be described 
perturbatively? 

pt 



THLPCC11 Mike Seymour 

Colour reconnection model 

•  Röhr, Siodmok and Gieseke have implemented 
a new model based on momentum structure 

•  Refit LEP-I and LEP-II data 
•  Conclusion: hadronization parameters correlated 

with reconnection probability, but good fit can be 
obtained for any value of preco 
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Parameter tuning 

•  Procedure: 
–  fix parton shower and hadronization parameters to 

LEP data, as a function of colour reconnection preco 
–  choose a total cross section and elastic slope 

parameter ⇒ Asoft,inc(b) and σtot,inc 
–  fit Ahard,inc(b), pt,min (⇒ σhard,inc and σsoft,inc) and preco to 

minimum bias and underlying event data 



Colour reconnection model/MPI tuning 
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Underlying event at 900 GeV 
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Underlying event at 1800 GeV 
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Underlying event at 7000 GeV 
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x-dependent matter distributions 

•  Most existing models use factorization of x and b 
–  or (Herwig++) crude separation into hard and soft 

components (simple hot-spot model) 
•  R.Corke and T.Sjöstrand, arXiv:1101.5953 

consider Gaussian matter distribution with width 
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x-dependent matter distributions 

•  Most existing models use factorization of x and b 
–  or (Herwig++) crude separation into hard and soft 

components (simple hot-spot model) 
•  R.Corke and T.Sjöstrand, arXiv:1101.5953 

consider Gaussian matter distribution with width 

  

•  for a1≈0.15, matter distribution can be E-indep 
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x-dependent matter distributions 
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x-dependent matter distributions 

•  (My) conclusion: for soft inclusive and jet 
underlying event data compatible with data but 
not required, but sheds interesting light on 
energy dependence 

•  Interesting correlation with hardness of hard 
scatter, e.g. less underlying event in 1 TeV Z’ 
events than in Z events 
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Conclusions on UE/MB 
•  Despite ~25 year history, multi-parton interaction 

models are still in their infancy 
•  LHC experiments’ 

–  step up in energy 
–  high efficiency, purity and phase space coverage 
–  emphasis on physical definition of observables 

 have given us a huge amount of useful data 
•  existing models describe data well with tuning 
•  need more understanding of correlations/corners 

of phase space/relations between different 
model components 
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Conclusions on UE/MB 

•  don’t forget that jet corrections depend on 
correlations and high moments of distributions 
and are physics-process dependent 



Conclusions 

•  Modern event generators are extremely well 
developed and tested 

•  Step up to LHC opens up phase space 
enormously – lots of scope for multiple hard 
emission and lots of different logs 
–  matrix element matching mandatory 

•  Multiple-interaction physics entering quantitative 
phase 
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