# Lumical @ future ee collider beamstrahlung and other studies

Yan Benhammou, Tel Aviv University

### Motivations

- Part of the FCal collaboration:
  - Study and design of the forward detectors for ILC : luminosity detector (LumiCal), beam calorimeter (BeamCal)
  - my focus : LumiCal. In the last 10 years, important developments to reach an ultra thin electromagnetic calorimeter (silicon, readout, mechanics) tested in many beam tests.
- Present and future : study the luminosity calorimeter at ILD/FCC with complete simulation
  - Study of background (beamstrahlung, beam background, ....)
  - Study of signal (e<sup>+</sup>e<sup>-</sup> -> e<sup>+</sup>e<sup>-</sup>, e<sup>+</sup>e<sup>-</sup> -> γ γ)



# Beamstrahlung : many low pT e+ e- pairs produced in each bunch crossing

#### Pairs spiraling in the magnetic field



Pair background density for a full bunch train (1312 bunch crossings)

A. Schuetz arXiv:1801.04156

X0 Y= 0.001 [cm]

### Machine-detector interface 🗄 🖁

|                                                                 | ILC          | FCCee                       |
|-----------------------------------------------------------------|--------------|-----------------------------|
| Crossing angle                                                  | 14 mrad      | 30 mrad                     |
| L* (distance from IP<br>to last accel focusing<br>quad. Magnet) | 4.1m         | 2.0m                        |
| Detector solenoid                                               | 3.5T         | 2.0T                        |
| Additional B-fields                                             | Anti-DID (?) | -compensating<br>-screening |



# Field map



#### **beamstrahlung**: many very low p<sub>T</sub>e+e- created in bunch collisions

very different bunch structure, materials and fields in the forward region  $\rightarrow$  major effect on beamstrahlung backgrounds ?

16/12/24

### Simulation : 100 BX

- GuineaPig : beamstrahlung generator
  - ILC-250 (from ILD/Mikael Berggren
  - FCCee-91, FCCee-240 (from FCCee/Andrea Ciarma)
- Using DD4HEP ILD detector models
- ILD@ILC:
  - Uniform 3.5 T (V02)
  - Uniform 2T (v02\_2T)
  - Field map with and without anti DID (v03 and v05)
- ILD@FCCee:
  - Uniform 2T (v11beta)
  - Detailed magnetic field (v11gamma)

## LumiCal @ ILD / FCC

|                          | ILD    | FCC          |
|--------------------------|--------|--------------|
| Sensitive region<br>(mm) | 80-195 | 55-115       |
| Pad number in<br>theta   | 64     | 32           |
| z position (m)           | ~2.5   | ~1.1         |
| Acceptance<br>(mrad)     | 41-67  | 62-88 (wide) |



### Number of hit pads in LumiCal



### Number of hit pads in lumical z>0



### Number of hit pads in lumical z<0



### Number of hit pads (mean value) in LumiCal



### Energy deposited per pad (MeV)





### Layer hit for 100 BX











#### V11 beta @Z

#### V11 beta @ZH

#### V11 gamma @Z

#### V11 gamma@ZH









### Layer hit for 100BX

ΖH



#### ILD\_I5\_v05 (ILC with anti DID)



FCC MDI meeting

### ILD\_I5\_v11gamma (FCC @ ZH peak)



### New study

- possibility to use the signal  $e^+e^- \rightarrow \gamma \gamma$
- Generation with BabaYaga@NLO for different energies (91, 160,240,365)
- Try to reproduce the study from Carlo Calame and al. (<u>https://arxiv.org/pdf/1906.08056</u>) production of di-photon pair at large angle (>20°)

| $\sqrt{s} \; ({ m GeV})$ | LO (pb) | NLO (pb)           | w h.o. (pb)            |
|--------------------------|---------|--------------------|------------------------|
| 91                       | 364.68  | $447.27 \ [+23\%]$ | $445.6(9) \ [-0.46\%]$ |
| 160                      | 123.71  | $154.37 \ [+25\%]$ | $153.2(2) \ [-0.95\%]$ |
| 240                      | 56.816  | $71.809\ [+26\%]$  | $71.07(6) \ [-1.30\%]$ |
| 365                      | 25.385  | $32.515\ [+28\%]$  | 32.09(2)  [-1.67%]     |

| Sqrt(s) (GeV) | NLO (pb) |
|---------------|----------|
| 91            | 447.54   |
| 160           | 154.54   |
| 240           | 71.80    |
| 365           | 32.51    |

| Sqrt(s) (GeV) | 2 photons (%) | 3 photons(%) |
|---------------|---------------|--------------|
| 91            | 29.6          | 70.7         |
| 160           | 27.6          | 72.4         |
| 240           | 26.0          | 74.0         |
| 365           | 24.5          | 75.5         |



### Extension to the LumiCal (2 photons).



|     | 2-178 | 6-174 | 2-6 (pb)   |
|-----|-------|-------|------------|
| 91  | 24.44 | 17.80 | 6.64 (27%) |
| 160 | 14.55 | 10.59 | 3.96 (27%) |
| 240 | 8.86  | 6.44  | 2.42 (27%) |
| 365 | 4.63  | 3.71  | 0.92 (25%) |

### Need to be simulated

### conclusion

- Study of beamstrahlung signal in LumiCal for FCCee started with full simulation (and comparison with ILC). Preliminary analysis shows:
  - Less hits in the LumiCal @ FCC than at ILC
  - Same energy deposited shape
  - Position of hits in LumiCal is different at FCC and ILC (front-end/right-left)
  - @ FCC with screening and compensation coil, number of pads hit per layer is between 2 and 10 at Z peak per BX
- future:
  - Maybe need more statistics (more BX to generate and simulate)
  - Continue the background study
  - Study the ee->  $e^+e^-$  ->  $\gamma \gamma$  signal
  - Bhabha generation and simulation with all the configurations

### Thanks

# DID and anti-DID

- DID : Detector Integrated Dipole.
   Pair of coils wound around the deetector solenoid which create a sine-like transverse field
- Anti DID : allows to zero the crossing angle for the outgoing beam



- Radius : FCC: 54<r<145
- Sensitive region : FCC 55<r<115 mm (32 pads) . ILD : 80<r<195mm (64 pads)</li>
- Acceptance FCC: 62-88 mrad (wide). ILD : 41-67 mrad
- Services FCC : 115<r<145
- z position : ~2.5m/~1.1m
- Acceptance :