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Fast instability Introduction

The ring impedance can generate an instability that leads the beam to oscillate
coherently with an exponentially growing amplitude, potentially losing the
beam within few turns.

A feedback system is under development to damp the instability. However,
feedback failures might happen and need to be investigated.

Effects on machine and detectors need to be understood to avoid damage.

Collimation system must protect the machine/detectors also in this scenario and
shouldn’t be damaged by it.

If not, both collimation and feedback systems must be improved or the beam must
be dumped before any damage occurs.
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IPA

Simulation setup .

Impedance model and single bunch interactions not simulated,

but it is under studying within the collective effects group.

Fast instability modeled by 8 exciters, giving dipole kicks, placed " b
along the ring (one per arc, shown as green points).

Exciters are synchronized such that the kicks (H/Vf are equall PE
distributed in Iphase advances across 90° and 180° (smoot

change in amplitude within 1 turn). PG

The exciter strengths change with time as:
Simulation parameters:

A t . . . 5
k= 2cos(2m Qy, t) 7, where t is the rise time. 5x 107 45.6 GeV electrons

Ox,y (Z-mode).

SR (mean model), RF

Resulting in betatron oscillations exponentially growing with time. Ny .
cavities, magnet tapering.

Performed with Xsuite-BDSIM simulation tool, as for the other »  detailed aperture model,
collimation studies with combined tracking and scattering routines. halo and tertiary
Beam loss distributions along the ring are produced as outputs. collimators, SR collimator,

wiggler.



(O Fce

16/12/2024 FCC-ee MDI meeting

Case studies

Fit of the amplitude growth to the average
centroid of the beam.

Since the instability can start at any point, it
Is relevant to explore the phase
dependence.

Exciters shifted along the ring to have four
different phase advances between the
first exciter and the primary collimator.
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HORIZONTAL INSTABILITY
CHARACITERISTICS
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Transverse beam position at primary collimator
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 The beam oscillates coherently in the
horizontal plane until collimator
apertures are reached.

0.1+

0.0 A1

y [mm]

» This animation does not include
scattering in the collimators, so the
distribution would be even more
spread.
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Beam intensity

 Entire beam is lost in few turns.

« Most of the configuration presents a turn where up to ~ 50% of the beam is lost.
« Order of MJ lost across collimators and apertures in one turn.

« The energy lost in first turns might be detected to dump the beam before damages.
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Lossmaps: worst case
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Lossmaps: Interaction regions (IPG)

Energy Lost [f]

1010

loB 4

106 4

104

102

109 4

102 A
44500

44750

TCT

HO0°t=3

—— Collimator losses

—— Warm losses

—— Cold losses

SR
IPG
T T || | T || T T T
45000 45250 45500 45750 46000 46250 46500

s[m]

+ Significant losses close to the
IPs, more than in the collimator
insertion.

* Possible solution:
* Shower absorber after
tertiary collimator to protect
detectors.
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L osses across collimators

» Total loss on same type of collimator shows:

* Primary collimators not always absorb most of the energy lost — primaries on tertiary collimators.
» Significant losses in the tertiary collimators, efficiently protecting SR collimators.
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VERTICAL INSTABILITY
CHARACITERISTICS
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Transverse beam position at primary collimator
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The beam oscillate coherently along
the vertical axis for many turns until
the dynamic aperture is reached —
beam distribution blows up.

Ongoing studies to tighten the vertical
collimator’s apertures up to the DA.

This animation does not include
scattering in the collimators.
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Beam intensity

 Entire beam is lost in few turns.

« Most of the configuration presents a turn where up to ~ 50% of the beam is lost.
« Order of MJ lost across collimators and apertures in one turn.

* Losses are more spread in time due to the beam blow up.
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Lossmaps: worst case
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Lossmaps: Interaction regions (IPJ)
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L osses across collimators

» Total loss on same type of collimator shows the same characteristic of the horizontal case:
* Primary collimators not always absorb most of the energy lost — primaries on tertiary collimators.
» Significant losses in the tertiary collimators, efficiently protecting SR collimators.
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Integrated lossmaps over all turns Hvs V
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Conclusions

« Fast instability modeled by synchronized kicks placed along the ring with raising
strength:
* Reproduced exponential growth of betatron oscillation amplitudes.
» Studied beam loss distributions around the ring and across multiple turns.

« THIS IS A WORK IN PROGRESS, affected by collimation optics updates and impedance
modeling as well as potential tightening of the vertical collimator cut.

« The fast instability could be dangerous if the feedback system fails.
* Full beam potentially lost within few turns.
« Almost 50% of beam energy lost in one turn, losses of order of MJ in the collimator can
be expected.
» The effects depend also on the phase advance.
» High losses in tertiary collimators hence nearby experiments.

« This instability could potentially cause damage both at the machine and detectors — further
investigation is needed.
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Next steps

 Energy deposition studies — impact distributions on collimators jaws
provided to the FLUKA team.

« High losses nearby experiments, shower calculation in the detector regions
are needed.

« Mitigating potential damage: the machine needs to be design such that
this instability doesn’t occur:
« redundancy in damper system,
* Interlocks,
« reduced impedance,
* high chromaticity,
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Thank you
for your attention!
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Fast instability: Introduction

Assumin? the beam as a single particle of charge N,e (no coupling) under the influence of an
0

external

rce(wake fields/impedance) and neglecting the longitudinal motion.

A complex tune shift is generated due to the impedance of the ring Aw = U —jV:

* The betatron motion is influenced by such
impedance.

8

» The real part of the impedance define
growth/damping rate of the betatron oscillation.

« The instability rise-time is given by:

E
1 _ 4”Qx,y(?t) )
Y TV T Te X {(—RelZy, (@)}

 If T> 0 - betatron oscillations grow
exponentially.

For more detalies X. Buffat.

109

24
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Lossmaps: Time distribution
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Considering the configuration u = 0°t = 3: tcp.h.bl
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Impact distributions have been provided to the FLUKA team for

energy deposition studies. -0.15

Note: Axes are with respect to the collimator system.
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Losses at the primary collimator (tcp.h.bl)

To compare the various cases is useful to look at the losses in the primary with respect to time:
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Losses at the tertiary collimator (tct.h.1.b1)

To compare the various cases is useful to look at the losses in the primary with respect to time:
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Lossmaps: Time distribution
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Impact distributions have been provided to the FLUKA team for energy
deposition studies.
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Losses at the primary collimator (tcp.v.b1)
To compare the various cases is useful to look at the losses in the primary with respect to time:
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Losses at the tertiary collimator (tct.v.1.b1)

To compare the various cases is useful to look at the losses in the primary with respect to time:
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