

LabVIEW FPGA @ CERN

• Unofficial

• For fun

• Share knowledge

2

About the workshops

• Minimize theory

• Maximize practice

• Some fun examples

3

LabVIEW

• Intuitive

• Data driven

• Hardware integration

4

Ritu Favre / Head of Test and Measurement

Business Unit

NI : leader in T&M

Leader in data acquisition technology with

innovative modular instruments and

LabVIEW graphical programming software

• Corporate headquarters in Austin, TX

• 35,000+ companies served annually

• More than 1,000 products

• Approx. 7,100 employees

• 600 Alliance Partners

• Part of Emerson Electric Co. in 2023

5

Diversity of applications

6

SpaceX

Falcon rocket launch pad software

Dragon capsule ground software

7

TAE

Commercial nuclear fusion power

8

LabVIEW on different hardware

Applications

Hardware

9

Projects based on NI @ CERN

• LHC collimators real-time control system

Control system requirements

Axes positioning accuracy few µm

Axes motion synchronization below 1 ms

Response delay to a digital start trigger 100 µs

Position sensors RT survey frequency 100 Hz

Reliability Very high

10

• LHC collimators real-time control system

Layout Architecture120 systems

11

• Kicker magnet control systems

Kicker magnets steer the beam

in and out of the different

accelerators

Booster

Booster

AD

LHCLEIR
12

CERN LabVIEW support

• Website: cern.ch/labview

• E-mail: labview.support@cern.ch or SNOW ticket with labview

13

mailto:labview.support@cern.ch

Why LabVIEW?

• Same concepts as in traditional
languages (data types, loops, event
handling, recursion and OOP)

• Data flow (execution is data-driven, not
determined by sequential lines of text)

• Automatic parallelism

• Automatic data synchronisation

• Intuitive

• Easy to debug

• NI hardware integration

• Combines with other languages

14

B. Project Explorer

Project Explorer Window

Files Types

Project Folders

15

Project Explorer

• See the hierarchy

• Organise project files

• Deploy files to targets

• Manage code for build

options

• Executables, installers,

and zip files

• Integrate with source

code control providers

PC

ARM

FPGA

16

Project Explorer

PC

ARM

FPGAXilinx Zynq 7010

PC

17

Connect to myRIO

1. Don’t have the myRIO connected yet

2. Power up the myRIO

3. Wait until the Status LED is off

4. Connect the myRIO to your PC

myRIO

PC

18

Start LabVIEW

Go to LabVIEWmyRIO

PC

19

Project

Blank Project

myRIO

PC

20

New target

Right click Project

Choose: New ->

targets and devices

myRIO

PC

21

Select myRIO

Open myRIO with +

Select NI myRIO

OK

myRIO

PC

22

Prepare myRIO

Close tabs:

• Onboard I/O

• Connector A

• Connector B DIO15:8

• Connector C

• Audio
myRIO

PC

23

NI myRIO Product Overview: Front View

XILINX Zynq SoC

24

Analogue Input

Analogue Output

Digital I/O

Custom I/O

Processor FPGA

What is Zynq?

PCI BusAXI Bus

Traditional Implementation

Single System on Chip

25

Why Zynq Matters in Education

•Smaller Size, Lower Power

•667 MHz Dual-Core ARM Cortex-

A9 Processor

•Artix-7 FPGA, 28k logic cells

•16 DMA Channels

•92 Billion calculations per second

26

Why Zynq Really Matters in Education

Leading Industry

Grade Technology

The same technology is used in

the modular I/O Compact RIO

systems

27

C. Parts of a VI

Front Panel

Block Diagram

Icon

Connector Pane

28

Parts of a VI

VIs have 3 main components:

Block diagram

Front panel

Icon/Connector pane

29

Parts of a VI – Front Panel

You build the front panel

with:

controls (inputs) and

indicators (outputs)

Front Panel – User interface for
the VI

30

Parts of a VI – Block Diagram

Front panel objects

appear as terminals on

the block diagram

Right click to add

functions

Block Diagram – Contains the
graphical source code

31

Show – off (2)

Front panel and diagram

32

Controls and Indicators
Controls

• Input devices
• Knobs, buttons,

slides
• Supply data to the

block diagram

Indicators
• Output devices
• Graphs, LEDs
• Display data the block

diagram acquires or
generates

33

Front Panel Object Styles
Modern Silver

34

Numeric Controls and Indicators

The numeric data in a control or indicator can represent

numbers of various types, such as integer or floating-

point.

Numeric
indicator

Numeric
controlIncrement/Decrement

buttons

35

Boolean Controls and Indicators

• The Boolean data type represents data that has only

two options, such as True/False or On/Off.

• Use Boolean controls and indicators to enter and

display Boolean (TRUE/FALSE) values.

• Boolean objects simulate switches, push buttons and

LEDs.

Boolean

control

Boolean

indicator

36

Strings

• The string data type is a sequence of ASCII characters.

• Use string controls to receive text from the user.

• Use string indicators to display text to the user.

37

Front Panel

38

E. Block Diagram

Terminals

Nodes

Wires

Help

39

Block Diagram

• Block diagram items:
• Terminals

• Constants

• Nodes
• Functions

• SubVIs

• Structures

• Wires

• Free labels

40

Terminals

Same label name

41

Terminals for Front Panel Objects

• Terminals are:

– Entry and exit ports that exchange information

between the front panel and block diagram

– Analogous to parameters in text-based

programming languages

• Double-click a terminal to locate the corresponding

front panel object

42

View Terminals as Icons

• By default, View as Icon

option enabled.

• Deselect View as Icon for a

more compact view.

Compact

Icon

43

Block Diagram

44

Nodes

Nodes are objects on the block diagram that
have inputs and/or outputs and perform
operations when a VI runs.

Nodes

45

Function Nodes

• Functions are:

• Fundamental operating elements of LabVIEW.

• Do not have front panels or block diagrams, but do

have connector panes.

• Have a pale yellow background on their icon.

• Functions do not open like VIs and subVIs.

46

SubVI Nodes

• SubVIs :
• Are VIs that you use on the block diagram of another

VI.

• Have front panels and block diagrams.

• Use the icon from the upper-right corner of the front
panel as the icon that appears when you place the
subVI on a block diagram.

• When you double-click a subVI, the front panel
and block diagram open.

• Any VI has the potential to be used as a subVI.

47

Structures

• Structures in LabVIEW have the form of frames

• Other nodes (functions, subVIs, more structures)
can be inserted into the frames

While loop Case (if .. then) Timed loop Sequence

48

Wires

• Wires transfer data between block diagram objects

• Wires are different colors, styles, and thicknesses,

depending on their data types

• A broken wire appears as a dashed

black line with a red X in the middle

Scalar

Floating-point Integer String Boolean

1-D Array

2-D Array

49

Constants

• Constants are the source of values just as

control terminals, but their value is fixed in the

code

• You can create a constant of each data type

50

Free labels

• A free label is a label (a text box) not attached to any object.

• Free labels can be put on the front panel or block diagram. They are
created by double-clicking on empty space in the window

• They can serve as comments or instructions to the user of the
application

51

Context Help

• Displays basic information about

wires and nodes when you move

the cursor over an object

• Can be shown or hidden in the

following ways:

• Select Help»Show Context Help

from the LabVIEW menu

• Press <Ctrl-H>

• Click the following button on the

toolbar:

52

LabVIEW Help

• Contains detailed descriptions and
instructions for most palettes, menus,
tools, VIs, and functions.

• Can be accessed by:

− Selecting Help»
LabVIEW Help from the menu.

− Clicking the Detailed help
link in the
Context Help window.

− Right-clicking an object
and selecting Help from
the shortcut menu

53

Examples

• LabVIEW includes hundreds of

example VIs.

• Use NI Example Finder to browse

and search installed examples

• Select Help»Find Examples in

the menu.

• Click the example buttons in LabVIEW Help topics

54

Controls Palette

• Contains the controls and

indicators you use to

create the front panel

• Navigate the subpalettes

or use the Search button

to search the Controls

palette

55

Functions Palette

• Contains the VIs, functions,

and constants you use to

create the block diagram.

• Navigate the subpalettes or

use the Search button to

search the Functions

palette.

56

Searching with Quick Drop

• Lets you quickly find

controls, functions, VIs,

and other items by name.

• Press the <Ctrl-Space>

keys to display the Quick

Drop dialog box.

57

G. Selecting a Tool

Selecting a Tool

Block Diagram Clean-Up

58

Selecting a Tool

• By default, LabVIEW

automatically selects tools

based on the context of the

cursor

• If you need more control, use the

Tools palette to select a specific

tool

Select View»Tools Palette to open

To move an object
(place cursor at edge)

To connect two objects
(place cursor at edge)

To manipulate an object
(place cursor on)

59

Wiring Tips

• Press <Ctrl-B> to delete broken wires

• Press <Esc> to delete an unfinished wire

• Right-click and select clean up and reroute the wire

60

Wiring Tips – Clean Up Diagram

Use the Clean Up Diagram tool to reroute
multiple wires and objects and to improve
readability.

1. Select a section of your block diagram.

2. Click the Clean Up Diagram button on the block
diagram toolbar (or press <Ctrl-U>).

61

H. Dataflow

63

Dataflow

LabVIEW follows a dataflow model for running VIs.

• A node executes only when data are available at all of its

required input terminals

• A node supplies data to the output terminals only when the

node finishes execution

64

Dataflow – Quiz

Which node executes first?

a) Add

b) Subtract

c) Random Number

d) Divide

e) Sine

65 65

Dataflow – Quiz Answer

No single correct answer.

Which node executes first?

a) Add – Possibly

b) Subtract –
Definitely not

c) Random Number –
Possibly

d) Divide – Possibly

e) Sine – Definitely not

66 66

I. Building a Simple VI

67

Simple VI

68 68

LabVIEW FPGA

hands-on

part 2

Adriaan Rijllart

Odd Øyvind Andreassen

CERN

Content of LabVIEW FPGA hands-on 2

• A few more LabVIEW basics

• Introduction to LabVIEW FPGA

• Overview of NI myRIO

• Exercises

• Resources and Next Steps

70

A few more LabVIEW basics

71

Shift register

• When programming with loops, you often need to

know the values of data from previous iterations of the

loop

• Shift registers transfer values from one loop iteration

to the next

72

While loop tunnel

• Tunnels transfer data into and out of

structures.

• When a tunnel passes data into a loop, the

loop executes only after data arrive at the

tunnel

(at all tunnels, if there is more

than one)

• Data pass out of a loop after the

loop terminates

74

For loop

• The value in the count terminal (an input terminal)

indicates how many times to repeat the loop

Last value

Indexed

75

Introduction to FPGA

Why Are FPGAs Useful?

• True Parallelism
Provides parallel tasks and pipelining

• High Reliability
Designs become a custom circuit

• High Determinism
Runs algorithms at deterministic rates down to 25
ns (faster in many cases)

• Reconfigurable
Create new and alter existing tasks easily

77

FPGA Technology

I/O Blocks

Programmable

Interconnects

Logic

Blocks

78

FPGAs are Dataflow Systems

A

B

C

D

FE

Implementing Logic on

FPGA:

F = {(A+B)CD} E

79

FPGAs are Dataflow Systems

A

B

C

D

FE

Implementing Logic on FPGA: F = {(A+B)CD} E

LabVIEW FPGA Code

80

A

B

C

D

FE

FPGAs are Parallel Dataflow Systems

YW X

Z

81

LabVIEW FPGA vs. VHDL

I/O with DMA

66 Pages ~4000

lines

82

LabVIEW FPGA: How does it work?

83

Robotic Table Football
Revolutionising Mechatronics Education

The Challenge The Solution

Using LabVIEW and myRIO to develop the Robotic Table
Football challenge. This practical approach to teaching
mechatronic systems integration resulted in a marked
increase in student engagement, improved grades and the
best system implementations to date.

Students struggled to realise their innovations using textual
programming, due to unintuitive syntax and complex
hardware integration. Following many research successes,
Loughborough wanted to incorporate LabVIEW into their
refined Mechatronic module

Robotic Table Football student projects

Self-balancing robot

The Challenge The Solution

Using LabVIEW and myRIO it’s fun to implementMake a self-balancing robot that can follow a track and stay
up also when meeting obstacles

Self-balancing robot

Orseus
myRIO in Space

The Challenge The Solution

Using myRIO to control all on-board sensors

and experimental equipment in a high

altitude balloon, from the launch to the

landing with real time monitoring and post

processing.

Developing an embedded system which

operates under low pressure and

temperature conditions - space. The system

must carry out various experiments, including

the study of solar radiation and atmospheric

pollution

Student Design Contest Winner 2014
Sepios, the Omnidirectional Cuttlefish Robot

The Challenge The Solution

A four-finned robot, each fin equipped with

nine servo motors to generate waves of

various shapes and perform any conceivable

manoeuver. All this is coordinated by a single
NI myRIO at the heart of the drone.

Creating a nautical robot driven by cuttlefish

inspired fins to study this unique propulsion
mechanism and its advantages

NI myRIO Product Overview: Front View

User Defined LEDs

Built-in Accelerometer

90

Top View

USB Port

Connection to PC

Power

91

NI myRIO Expansion Port (MXP)

4 AI

2 AO

3 PWMs

1 Quad Encoder

1 UART

1 SPI

1 I2C

6

DIO

MXP B

Identical Connectors

MXP A

92

NI miniSystems Port (MSP)

Audio in/out more analog and digital I/O

93

myRIO exercise board

Exercise board

AI0

DIO4

AI2

AO0 AI1

DIO0

DIO2

DIO1

DIO3

5 V

3.3 V

2.2 kΩ

1 MΩ

47 kΩ

10 nF

95

Exercise 1 Blinking LED

DIO4

3.3 V

47 kΩ

Make the LED blink with a controllable speed

from 1 to 40 Hz

Question:

At what frequency you don’t see the

blinking anymore?

96

Exercise 2 Switch on when it’s dark

Switch on the LED when the photodiode signal is

below the threshold 100 (arbitrary units)

• Plot the photodiode signal in a chart

• The threshold value should be set using a control

• Remember the LED is on when D4 is False

AI0

5 V

1 MΩ

D4

3.3 V

2.2 kΩ

Question:

• What would happen when the photodiode would pick up the LED light?

To test, block the light to the

photodiode or increase light using

your mobile phone

LED

photodiode

97

Exercise 3 Acquire transient

Generate a step function from 0 – 5 V (int. value 4095)

Acquire step function signal and response of RC circuit

• Once per second

• Generate output voltage from 0 to 5 V (and reverse)

• Acquire both AI1 and AI2 signals using 20 points

• Show both in a graph

• RC value is 470 µs

• Set DAQ loop time (with a control) to 100 µs

AI2

AO0 AI1

47 kΩ

10 nF

Questions:

• Is the step function (AI1) really a step?

• What do you see when changing the DAQ loop time (both AI1 and 2)?

98

Exercise 4 Pulse delay

Generate short pulse on D0 and D2 (low – high – low)

Make a separate control for low D0 and D2 (using

ticks)

Acquire 20 points on D1 and D3 with 1 tick loop delay

Repeat at 100 ms (10 Hz)

• Control for low time of pulse (4 ticks)

• Control for high time of pulse (8 ticks)

• Control for DAQ loop (1 tick)

• Graph D1

• Graph D3

DIO0

DIO2

DIO1

DIO3

Questions:

• What do you see when changing the high and low values?

• Can you explain?

99

Exercise 4 Pulse delay, measured with scope

Lower pulse delayed by 25 ns Lower pulse delayed by 50 ns

100

How to communicate data between
FPGA – ARM – PC

?

FPGA to ARM communication

FPGA

ARM

Which

myRIO?

Which

VI?

Which

data?

102

FPGA to ARM to PC communication

FPGA

ARM

PC

103

From small to big FPGA’s

1. myRIO

2. sbRIO

3. cRIO

4. PXIe R-series boards

5. PXIe FlexRIO boards

104

A FlexRIO system for X-band cavity test

PXIe FlexRIO boards

105

Resources and Next Steps

ni.com/students/learn-rio

NI myRIO Kits | ni.com/myrio

Starter EmbeddedMechatronics

LEDs & switches
7-segment display

Potentiometer
Thermistor

Photo resistor
Hall effect

Microphone/Speaker
Battery holder

DC motor

DC gear motors/encoders
H-bridge driver
Accelerometer
Triple-axis gyro

Infrared proximity sensor
Ambient light sensor

Ultrasonic range finder
Compass

Hobby servo motors

RFID reader kit
Numeric keypad

LED matrix
Digital potentiometer

Character LCD
Digital temp sensor

EEPROM

107

Learn More About Programming NI myRIO

ni.com/learn-myRIO

ni.com/community/myrio

108

Thank you !!!

109

