CpplInterOp: Advancing Interactive C++
& Python for High Energy Physics

Aaron Jomy, CERN EP-SFT
Jonas Rembser, CERN EP-SFT
Vassil Vassilev, Princeton University

for the ROOT team

EP R&D Software Working Group Meeting
15.01.25
aaron.jomy@cern.ch

Introduction gl M CPpPpYY

COMPILER INFRASTRUCTURE

cppyy
An automatic C++ - Python runtime bindings engine which powers ROOT’s python

interoperability

Cling
ROQOT’s interactive C++ interpreter, built on LLVM and Clang
Used in cppyy’s(upstream) backend

Clang-REPL
A lightweight generalization of Cling in LLVM - supports interactive programming
for C++ in aread-evaluate-print-loop (REPL) style

CpplInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting

ROOT's C++ Interpreter and Python: Motivation

To develop software solutions for HEP which are generalized for other sciences.

- ROOT 6 developed SoA JIT compilation technology through Cling
- At the cost of in-house extensions to LLVM (~50 patches)

The NSF funded certain developments in the area to generalize them for other
sciences

- In LLVM through the Compiler-Research initiative (Clang-REPL, CpplnterOp)

Ongoing R&D aims to implement similar solutions in ROOT to reduce the
maintenance cost and improve the resilience of the HEP software ecosystem.

- How?

CpplInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting

https://compiler-research.org/https://compiler-research.org/

Challenges

ROOT and Python Yg{ M CPPYY

COMPILER INFRASTRUCTURE

e Maintenance cost
o Keeping ROOT’s fork of cppyy up to date, while supporting ROOT users Python code

e The development of cppyy upstream and ROOT'’s fork diverged
o cppyy’s fork of cling is patched for optimal python bindings
o ROOT’s cling does not necessarily ensure the same behavior

e Compiler level APl comes from ROOT's type system (ROOT meta)
o ROOT metais essential for the reflection system that enables ROOT I/O
o However, does not provide the best reflection API, as it was not designed with
language bindings in mind (Eg. Template instantiation, overload resolution, enums)

CpplInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting

ROOT meta

e ROOQOT uses LLVM API to drive its C++ reflection system (ROOT meta).
This reflection system is used for 1/O, as well as perform python bindings

e Over theyears, ROOT'’s core/metacling system grew organically, and hinders
the adoption of newer technologies like CUDA and advanced language
interoperability (Python, Julia)

e CppinterOpis a solution that leverages our experience into small, well-tested
and versatile libraries that provides building blocks for both dictionaries and

advanced language interoperability

CpplInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting

The solution we identified: CpplnterOp
A finer-grained lightweight layer on top of LLVM/Clang that provides efficient,
on-demand reflection, that drives language bindings generation.

The ability to be powered by multiple interpreters:

e ROOT'sCling
e LLVM'’sClang-REPL

This opens the door to eventually upstream the interpreter into LLVM, bringing in
efforts from the broader LLVM community, further reducing the maintenance cost.

CpplInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting

Content V*?‘{?
onten éi M OpOYY

COMPILER INFRASTRUCTURE

This presentation aims to showcase the latest developments in ROOT, and the
potential of this technology through several use cases:

1. Reduction of in-house technical debt: Removing patches to LLVM by moving

parts upstream
2. Providing better encapsulation of C++ reflection information in ROOT

dictionaries via CpplnterOp
3. Enabling cutting edge R&D in the domain of language bindings (Python, numba,

Julia..)

CpplInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting

Work Done and Impact

LLVM work trickling to ROOT Al &JM

COMPILER INFRASTRUCTURE

Reduction of patches by fixing existing LLVM issues.

Collaboration with Apple Engineers: Exceptions on Apple Silicon

Collaboration with Google Engineers: Lazy Template Specialization Loading

Ran ROOT use cases

Core Developments:

- Dynamic Library Manager upstreamed to LLVM: S. Patildar
Upstream LLVM PR motivated by ROOT’s use case
https://github.com/llvm/llvm-project/pull/109913 ->
Review suggested many design changes which are incorporated back into ROOT
https.//github.com/root-project/root/pull/17227

CpplInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting

10

https://github.com/compiler-research/CppInterOp/pull/254
https://github.com/llvm/llvm-project/pull/83237
https://github.com/llvm/llvm-project/pull/109913
https://github.com/root-project/root/pull/17227

CpplinterOp

CpplnterOp exposes APl from Clang and
LLVM in a backward compatible way.

The APl support downstream tools that
utilize interactive C++ by using the compiler
as a service.

This allows ROOT to embed Clang and LLVM
as a libraries in their codebases.

The API are designed to be minimalistic and
aid non-trivial tasks such as language
interoperability on the fly.

Clang-Repl Design

C/C

(2),(3),(5) 1
0

ompila
iblucremen
(8

PU
> | MO (86 NVPTX) <
GPGPU

libInterOp Design

e) - (i~ {e]

Swift, Julia 3
«
CLR (C#
Programming Environments

CpplInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting

1

Integration with ROOT - Design

The adoption of CpplnterOp in ROOT is (Droor cPpyy Xeus-cpp
underway and aims to abstract the [Python/C++ Python/C++

. . R Interoperability Notebooks
interpreter infrastructure into LLVM.

Provides out-of-the box compatibility with interpreter Runtime Cr Runt.meeng.ne
CUDA, OpenMP and other parallel DynamickibraryManager OpanMP G kot
computing platforms \/
CpplnterOp enables seamless utilization of [CpplnterOp }
hardware accelerators and other

heterogeneous hardware

ROOT LLVM
Cling Clang-REPL

CpplInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting 12

An illustration of a scientific workflow powered by CpplnterOp

Define a function that updates a discrete Kalman filter cycle,
using CUDA kernels for all matrix computations

std::vector<double> KalmanFilter::update(const std::vector<double>& y) {
if (!initialized)
throw std::runtime_error("Filter is not initialized!");

// Discrete Kalman filter time update
x_hat_new = matvecmulCUDA(A, x_hat);
P = mataddCUDA(matmulCUDA(matmulCUDA(A, P), mattransposeCUDA(A)), Q);

// Discrete Kalman filter measurement update
std::vector<std::vector<double>> inv = matinverse(mataddCUDA(matmulCUDA
K = matmulCUDA(matmulCUDA(P, mattransposeCUDA(C)), inv);
std::vector<double> temp = matvecmulCUDA(C, x_hat_new);
std::vector<double> difference = vecsubCUDA(y, temp);
std::vector<double> gain = K[0];
for (size_t i = 0; i < x_hat_new.size(); i++) {

x_hat_new[i] += matvecmulCUDA(K, difference) [i];
}

P = matmulCUDA(matsubCUDA(I, matmulCUDA(K, C)), P);

x_hat = x_hat_new;
t += dt;

Kalman Gain Plot

Load 1D projectile motion dataset in Python with pyyaml

%%python

import yaml
import cppyy

with open('data/measurements.yml', 'r') as file:
data_dict = yaml.safe_load(file)
data_list = list(float(x) for x in data_dict['data'])

measurements_vector = cppyy.gbl.std.vector['double'] (data_list)

Run the CUDA accelerated C++ function on the same data

std: :vector<std: :vector<double>> g_res = run_kf(true);

0, x_hat([@]: 1.04203 @ -15

0.0333333, y[0] = 1.04203, x_hat[0] = 1.04203 -0.5 -15

0.0666667, y[1] = 1.10727, x_hat[1] = 1.08556 -0.0966619 -14.9988
0.1, yl[2] = 1.29135, x_hat[2] = 1.21317 0.720024 -14.9952
0.133333, y[3] = 1.48485, x_hat[3] = 1.36865 1.21707 -14.9881
0.166667, y[4] = 1.72826, x_hat[4] = 1.55548 1.60875 -14.9732
0.2, y[5] = 1.74216, x_hat([5] = 1.66278 1.38374 -14.9637

Aottt
[T T TR T TR T}

True Value vs. g_pred

0.7 q

0.6

0.5

0.4

Kalman Gain
Acceleration (m/s2)
=
Y]

03

0.2 10

KF Estimates

This ties in with on going work by
L. Breitwieser, EP-SFT, enabling

the capability to JIT CUDA code,
another EP R&D initiative

[20 40 60 80 100 120 140
Time Steps

CpplInterOp: Advancing Interactive C++ & Python for High Energy Physics

20 40 60 80 100 120 140
Index

Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting

13

Integration with ROOT - Language Bindings

CpplnterOp enables dynamic C++ interactions [
i t CopInterp] | Clang-REPL

with multiple languages and diverse computing Layer

environments like Jupyter \ p

This is achieved by providing ROOT with:

————————————————————————

e a performant JIT, to incrementally compile C++ code
® areflection APl to drive bindings generation.

P el

————————————————————————

Programming Environments

CpplInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting

T o o o o

14

The model we want ﬁ

Ongoing development of a new cppyy based on
CpplnterOp, setting a standard for improved language
bindings that ROOT can adopt.

COMPILER INFRASTRUCTURE pp

Python

CPPYY

Current progress: 335/504 passing test cases on Linux

CpplnterOp allows Cppyy to use LLVM's Clang-REPL as a Sppyy-DackerHd iEepmediase
runtime compiler inviting longer term sustainability ch
Opens up more C++ features that can be used by Cppyy T CpplnterOp
users - Eg. Partially specialized templates fClang_-RElrfL
unctiona Ity
Lower dependencies leads to a performance
improvement Clang-REPL

CpplInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting

I n teg ra t i 0 n W i t h C p pyy . Memory used by original Cppyy @ Time taken by original Cppyy

I Memory used by Cppyy w/ InterOp eeTime taken by Cppyy w/ InterOp
0.09 142 1000 10000
0.08 140 100
) 1000 &
0.0 138 2 2
chadl S 2% 10 &%
£ 006 136 & ERG & s
! £ ER 100 8
0.05 134 2 2 2
£ 3 g £ 2
& 0.04 132 5 e £3
= = ==
0.03 130 0.01
0.02 128 0.001 1
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Number of template arguments Number of nested template instantiations

we compare template instantiations with std::tuple, we compare nested templates like std::vector<...<std::vector>>, where

where more arguments increase instantiation times cppyy instantiates from the innermost to the outermost layer

® Results without explicit optimisations show significant performance gains

® CpplnterOp significantly improves cppyy in both time and memory for template
instantiations.

® Forstd::tuplebased multitype arrays:

o CpplinterOp is 40% faster and 4.5% more memory-efficient.

o Deeply nested templates show an initial speedup of 6.2x, tapering to 3.8x at 4 levels, with further
scaling and memory gains.

CpplInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting 16

Current Plan of Action

e PRenabling CpplnterOp on ROOT is ready: https:/sithub.com/root-project/root/pull/16814
and is stable on all platforms

Enable CpplnterOp #16814 Edit <> Code -

IiDraft aaronj0 wants to merge 15 commits into ro project:master from aaronj@:enable-interoy LE’

) Conversation 8 -0- Commits 15 Fl checks 21 Files changed 67

e Nextstepistoincrementally tackle parts of ROOT'’s meta infrastructure with
InterOp API, and propose the changes to LLVM for upstreaming
o Eg. JITCall functionality- A function calling mechanism (requires ~4-8 weeks)

CpplInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting

17

https://github.com/root-project/root/pull/16814

Current Plan of Action

e Short term benefits for ROOT:
o Instantiating templates that ROOT currently cannot instantiate:
https://github.com/root-project/root/issues/6481

//;iass InheritTemplateFun: TemplateFun:\\
public:
using TemplateFun::TemplateFun;

Fails because L.ookupHelper doesn't know how
to instantiate function templates, even though at

bi
//Test least the function template is made available to
TClass *clInhTemplateFun = the derived class

TClass::GetClass ("InheritTemplateFun") ;

\\\7 ASSERT NE (clInhTemplateFun, nullpt%ij/

CpplInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting

18

https://github.com/root-project/root/issues/6481

Current Plan of Action

e Shortterm benefits in ROOT:
o Replace certain interfaces for more precise reflection, and therefore bindings.
o Eg:IsAggregatesometimes returns true for non-aggregate classes like
std: :tuple https./github.com/root-project/root/issues/16469
We can fix this bug today with the new clang-based API that CpplnterOp provides

CpplInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting

19

https://github.com/root-project/root/issues/16469

Current Plan of Action

e 100% test coverage of InterOp-based cppyy, and setting both upstream
and ROOT to use this new and improved standard for python bindings
(ETA ~3 months)

CpplInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting

20

©
o (I)
Future Opportunities: ROOT + Julia jUIla

This can allow ROQOT to bind to the Julia runtime non-invasively, opening
extensive avenues for R&D

- we can prototype “ROOT.,jl” by developing an automatic engine like cppyy for Julia

Initial interest from the Julia community has led to several contributions to
CpplnterOp by a former developer of Clang.jl

- https://qithub.com/Gnimuc/CpplnterOp.jl

Currently being used in JuliaPackaging/BinaryBuilder
- https://github.com/JuliaPackaging/Yggdrasil/commits/master/L/libCppinterOp

CpplInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting 21

https://github.com/Gnimuc/CppInterOp.jl
https://github.com/JuliaPackaging/Yggdrasil/commits/master/L/libCppInterOp

Summary
e Putsin place a mechanism by which external expert effort is attracted to ROOT
(LLVM compiler engineer community)

e Thedevelopment of a new lightweight library on top of LLVM, driving improved
reflection and language bindings

e The adoption of the CpplinterOp library with ROOT, improving performance and
stability of core libraries

e Redesign of cppyy based on InterOp, removing ROOT's forks of cppyy in the process

e Moving towards a patch-free LLVM for ROOT, and offloading the maintenance costs
of the interpreter to LLVM

CpplInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting

22

