
CppInterOp: Advancing Interactive C++
& Python for High Energy Physics

Aaron Jomy, CERN EP-SFT
Jonas Rembser, CERN EP-SFT
Vassil Vassilev, Princeton University

for the ROOT team

EP R&D Software Working Group Meeting

15.01.25

aaron.jomy@cern.ch

Introduction

cppyy
An automatic C++ - Python runtime bindings engine which powers ROOT’s python
interoperability

Cling
ROOT’s interactive C++ interpreter, built on LLVM and Clang
Used in cppyy’s(upstream) backend

Clang-REPL
A lightweight generalization of Cling in LLVM - supports interactive programming
for C++ in a read-evaluate-print-loop (REPL) style

CppInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting 2

ROOT’s C++ Interpreter and Python: Motivation

To develop software solutions for HEP which are generalized for other sciences.

- ROOT 6 developed SoA JIT compilation technology through Cling
- At the cost of in-house extensions to LLVM (~50 patches)

The NSF funded certain developments in the area to generalize them for other
sciences

- In LLVM through the Compiler-Research initiative (Clang-REPL, CppInterOp)

Ongoing R&D aims to implement similar solutions in ROOT to reduce the
maintenance cost and improve the resilience of the HEP software ecosystem.

- How?

CppInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting 3

https://compiler-research.org/https://compiler-research.org/

Challenges

ROOT and Python

● Maintenance cost
○ Keeping ROOT’s fork of cppyy up to date, while supporting ROOT users Python code

● The development of cppyy upstream and ROOT’s fork diverged
○ cppyy’s fork of cling is patched for optimal python bindings
○ ROOT’s cling does not necessarily ensure the same behavior

● Compiler level API comes from ROOT’s type system (ROOT meta)
○ ROOT meta is essential for the reflection system that enables ROOT I/O
○ However, does not provide the best reflection API, as it was not designed with

language bindings in mind (Eg. Template instantiation, overload resolution, enums)

CppInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting 5

ROOT meta

● ROOT uses LLVM API to drive its C++ reflection system (ROOT meta).
This reflection system is used for I/O, as well as perform python bindings

● Over the years, ROOT’s core/metacling system grew organically, and hinders
the adoption of newer technologies like CUDA and advanced language
interoperability (Python, Julia)

● CppInterOp is a solution that leverages our experience into small, well-tested
and versatile libraries that provides building blocks for both dictionaries and
advanced language interoperability

CppInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting 6

A finer-grained lightweight layer on top of LLVM/Clang that provides efficient,

on-demand reflection, that drives language bindings generation.

The ability to be powered by multiple interpreters:

● ROOT’s Cling

● LLVM’s Clang-REPL

This opens the door to eventually upstream the interpreter into LLVM, bringing in

efforts from the broader LLVM community, further reducing the maintenance cost.

The solution we identified: CppInterOp

CppInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting 7

Content

This presentation aims to showcase the latest developments in ROOT, and the

potential of this technology through several use cases:

1. Reduction of in-house technical debt: Removing patches to LLVM by moving

parts upstream
2. Providing better encapsulation of C++ reflection information in ROOT

dictionaries via CppInterOp

3. Enabling cutting edge R&D in the domain of language bindings (Python, numba,

Julia..)

CppInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting 8

Work Done and Impact

LLVM work trickling to ROOT

Reduction of patches by fixing existing LLVM issues.

Collaboration with Apple Engineers: Exceptions on Apple Silicon

Collaboration with Google Engineers: Lazy Template Specialization Loading

Ran ROOT use cases

Core Developments:

- Dynamic Library Manager upstreamed to LLVM: S. Patildar
Upstream LLVM PR motivated by ROOT’s use case
https://github.com/llvm/llvm-project/pull/109913 ->
Review suggested many design changes which are incorporated back into ROOT
https://github.com/root-project/root/pull/17227

CppInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting 10

https://github.com/compiler-research/CppInterOp/pull/254
https://github.com/llvm/llvm-project/pull/83237
https://github.com/llvm/llvm-project/pull/109913
https://github.com/root-project/root/pull/17227

CppInterOp

CppInterOp exposes API from Clang and
LLVM in a backward compatible way.

The API support downstream tools that
utilize interactive C++ by using the compiler
as a service.

This allows ROOT to embed Clang and LLVM
as a libraries in their codebases.

The API are designed to be minimalistic and
aid non-trivial tasks such as language
interoperability on the fly.

CppInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting 11

The adoption of CppInterOp in ROOT is
underway and aims to abstract the
interpreter infrastructure into LLVM.

Provides out-of-the box compatibility with
CUDA, OpenMP and other parallel
computing platforms

CppInterOp enables seamless utilization of
hardware accelerators and other
heterogeneous hardware

 ROOT cppyy

CppInterOp

Python/C++
Interoperability

xeus-cpp

Python/C++
Notebooks

Interpreter
JITCall

DynamicLibraryManager

Runtime engine
CUDA C++ kernel

OpenMP C++ kernel
…

ROOT
Cling

LLVM
Clang-REPL

Runtime C++
Interpreter

Integration with ROOT - Design

CppInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting 12

An illustration of a scientific workflow powered by CppInterOp

This ties in with on going work by
L. Breitwieser, EP-SFT, enabling
the capability to JIT CUDA code,
another EP R&D initiative

CppInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting 13

Integration with ROOT - Language Bindings

CppInterOp enables dynamic C++ interactions
with multiple languages and diverse computing
environments like Jupyter

This is achieved by providing ROOT with:

● a performant JIT, to incrementally compile C++ code
● a reflection API to drive bindings generation.

CppInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting 14

The model we want

Ongoing development of a new cppyy based on
CppInterOp, setting a standard for improved language
bindings that ROOT can adopt.

Current progress: 335/504 passing test cases on Linux

CppInterOp allows Cppyy to use LLVM's Clang-REPL as a
runtime compiler inviting longer term sustainability

Opens up more C++ features that can be used by Cppyy
users - Eg. Partially specialized templates

Lower dependencies leads to a performance
improvement

CppInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting 15

● Results without explicit optimisations show significant performance gains

● CppInterOp significantly improves cppyy in both time and memory for template

instantiations.

● For std::tuple based multitype arrays:
○ CppInterOp is 40% faster and 4.5% more memory-efficient.

○ Deeply nested templates show an initial speedup of 6.2x, tapering to 3.8x at 4 levels, with further

scaling and memory gains.

Integration with cppyy

CppInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting 16

we compare nested templates like std::vector<...<std::vector>>, where
cppyy instantiates from the innermost to the outermost layer

we compare template instantiations with std::tuple,
where more arguments increase instantiation times

Current Plan of Action

● PR enabling CppInterOp on ROOT is ready: https://github.com/root-project/root/pull/16814

and is stable on all platforms

● Next step is to incrementally tackle parts of ROOT’s meta infrastructure with

InterOp API, and propose the changes to LLVM for upstreaming
○ Eg. JITCall functionality- A function calling mechanism (requires ~4-8 weeks)

CppInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting 17

https://github.com/root-project/root/pull/16814

Current Plan of Action

● Short term benefits for ROOT:
○ Instantiating templates that ROOT currently cannot instantiate:

https://github.com/root-project/root/issues/6481

class InheritTemplateFun: TemplateFun {
public:
 using TemplateFun::TemplateFun;
};
//Test
TClass *clInhTemplateFun =
TClass::GetClass("InheritTemplateFun");
 ASSERT_NE(clInhTemplateFun, nullptr);

Fails because LookupHelper doesn't know how
to instantiate function templates, even though at
least the function template is made available to
the derived class

CppInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting 18

https://github.com/root-project/root/issues/6481

Current Plan of Action

● Short term benefits in ROOT:
○ Replace certain interfaces for more precise reflection, and therefore bindings.

○ Eg: IsAggregate sometimes returns true for non-aggregate classes like

std::tuple https://github.com/root-project/root/issues/16469
We can fix this bug today with the new clang-based API that CppInterOp provides

CppInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting 19

https://github.com/root-project/root/issues/16469

Current Plan of Action

● 100% test coverage of InterOp-based cppyy, and setting both upstream

and ROOT to use this new and improved standard for python bindings

(ETA ~3 months)

CppInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting 20

Future Opportunities: ROOT + Julia

This can allow ROOT to bind to the Julia runtime non-invasively, opening
extensive avenues for R&D

- we can prototype “ROOT.jl” by developing an automatic engine like cppyy for Julia

Initial interest from the Julia community has led to several contributions to
CppInterOp by a former developer of Clang.jl

- https://github.com/Gnimuc/CppInterOp.jl

Currently being used in JuliaPackaging/BinaryBuilder

- https://github.com/JuliaPackaging/Yggdrasil/commits/master/L/libCppInterOp

CppInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting 21

https://github.com/Gnimuc/CppInterOp.jl
https://github.com/JuliaPackaging/Yggdrasil/commits/master/L/libCppInterOp

Summary

● Puts in place a mechanism by which external expert effort is attracted to ROOT
(LLVM compiler engineer community)

● The development of a new lightweight library on top of LLVM, driving improved
reflection and language bindings

● The adoption of the CppInterOp library with ROOT, improving performance and
stability of core libraries

● Redesign of cppyy based on InterOp, removing ROOT’s forks of cppyy in the process

● Moving towards a patch-free LLVM for ROOT, and offloading the maintenance costs
of the interpreter to LLVM

CppInterOp: Advancing Interactive C++ & Python for High Energy Physics Aaron Jomy | CERN EP-SFT | EP R&D Software Working Group Meeting 22

