
RNTuple: latest developments & the
RNTupleProcessor

Florine Willemijn de Geus, CERN EP-SFT & University of Twente (NL)

for the RNTuple development team

EP R&D Software Working Group Meeting
January 15, 2025
florine.de.geus@cern.ch

mailto:florine.de.geus@cern.ch

Introduction

Based on 25+ years of TTree experience, RNTuple is a redesigned columnar I/O subsystem
aiming at:

• Less disk and CPU usage through smaller files and higher throughput;
• Systematic use of data checksums and runtime exceptions to prevent silent I/O errors;
• Efficient support for modern hardware;
• Native support for local and remote ROOT files and object stores;
• Coverage of all of today’s TTree use cases (integration in both Athena and CMSSW);
• A binary format defined in a dedicated specification.

The first production version of the RNTuple on-disk binary format is available in ROOT 6.34.
The API will start moving out of ROOT::Experimental from ROOT 6.36 onward.

RNTuple updates & RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente | EP R&D Software Working Group Meeting 2/17

https://github.com/root-project/root/blob/master/tree/ntuple/v7/doc/specifications.md

Recent performance results I

CHEP ’24: RNTuple: A CMS perspective
CHEP ’24: ROOT RNTuple and EOS: The Next Generation of Event Data I/O

RNTuple updates & RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente | EP R&D Software Working Group Meeting 3/17

https://indico.cern.ch/event/1338689/contributions/6010800/
https://indico.cern.ch/event/1338689/contributions/6077632/

Recent performance results II

CHEP ’24: ROOT RNTuple and EOS: The Next Generation of Event Data I/O

RNTuple updates & RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente | EP R&D Software Working Group Meeting 4/17

https://indico.cern.ch/event/1338689/contributions/6077632/

Combining data sets with the RNTupleProcessor

Why do we want to combine data sets?

A data set is typically stored across multiple files (samples), but we want seamless event
processing.
: need to be able to vertically concatenate samples.

1. Analysis may require objects not present in the compact data format;
2. Analyses could be sped up by storing and reusing (expensive) intermediate computation

results.

: need to be able to horizontally concatenate samples.

RNTuple updates & RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente | EP R&D Software Working Group Meeting 6/17

Why do we want to combine data sets?

A data set is typically stored across multiple files (samples), but we want seamless event
processing.
: need to be able to vertically concatenate samples.

1. Analysis may require objects not present in the compact data format;
2. Analyses could be sped up by storing and reusing (expensive) intermediate computation

results.

: need to be able to horizontally concatenate samples.

RNTuple updates & RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente | EP R&D Software Working Group Meeting 6/17

Combining HEP data sets

TTree has the ability to concatenate data sets in two directions:
1. Vertically through the TChain interface;

: comparable to a SQL UNION ALL operation (but not exactly).
2. Horizontally through the TTree::AddFriend interface, possibly using a TTreeIndex for

unaligned entries
: comparable to a SQL JOIN operation (but not exactly).

They can be combined using TChain::AddFriend.

Similar functionality is desired for RNTuple. We want to provide additional composition
flexibility and above all, prevent users from accidentally getting erroneous data.

RNTuple updates & RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente | EP R&D Software Working Group Meeting 7/17

Data set joins: the ideal case

Primary data
Event A B

12

13

14

Aux. data
Event C

12

13

14

Joined data
Event A B C

12

13

14

⨝ =

RNTuple updates & RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente | EP R&D Software Working Group Meeting 8/17

Data set joins: a realistic scenario

Primary data
Event A B

12

13

14

Aux. data
Event C

14

12

13

Joined data
Event A B C

12

13

14

⨝ =

RNTuple updates & RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente | EP R&D Software Working Group Meeting 9/17

The caveats of unaligned data set joins

• Which events belong together?
▶ Both false positives and negatives are

unacceptable!
• What if the right-hand side event data is
missing?

• What if my events are scattered across
multiple files?

• What if want to distribute my analysis?

+ How to express all of this nicely?

Primary data
File 1

File 2

Entry N1

Entry N2

Entry N3

Entry N4

Auxiliary data
File 1

File 2

File 3

Entry M1

Entry M2

Entry M3

= corresponds to entry

???

RNTuple updates & RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente | EP R&D Software Working Group Meeting 10/17

The caveats of unaligned data set joins

• Which events belong together?
▶ Both false positives and negatives are

unacceptable!
• What if the right-hand side event data is
missing?

• What if my events are scattered across
multiple files?

• What if want to distribute my analysis?

+ How to express all of this nicely?

Primary data
File 1

File 2

Entry N1

Entry N2

Entry N3

Entry N4

Auxiliary data
File 1

File 2

File 3

Entry M1

Entry M2

Entry M3

= corresponds to entry

???

RNTuple updates & RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente | EP R&D Software Working Group Meeting 10/17

Handling unaligned joins

When events between two data sets don’t align on their entry numbers, we need a join table:

• Mapping between values of one or multiple join columns and corresponding entry
numbers;
▶ Support for up to 4 integral-type join columns;
▶ Multiple column values are combined into a single hash.

• Built for the auxiliary data set;
• Probed using values from the primary data set.

joinVals = {
run = 4
event = 1234

}

hash(joinVals) = 1035905 getEntryNumber(1035905) = 42

RNTuple updates & RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente | EP R&D Software Working Group Meeting 11/17

The RNTupleProcessor

New data iteration model: RNTupleProcessor.

Responsible for handling chains and joins , in a unified way.

RNTuple updates & RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente | EP R&D Software Working Group Meeting 12/17

The RNTupleProcessor

New data iteration model: RNTupleProcessor.

Responsible for handling chains and joins , in a unified way.

std::vector<RNTupleSourceSpec> ntuples{
{"myElectrons", "electrons1.root"}, {"myElectrons", "electrons2.root"}};

auto processor = RNTupleProcessor::CreateChain(ntuples);

for (const auto &entry : *processor) {
std::cout << "pt = " << *entry.GetPtr<float>("pt") << std::endl;

}

: See the ntpl012_processor_chain.C tutorial

RNTuple updates & RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente | EP R&D Software Working Group Meeting 12/17

https://root.cern/doc/master/ntpl012__processor__chain_8C.html

The RNTupleProcessor

New data iteration model: RNTupleProcessor.

Responsible for handling chains and joins , in a unified way.

std::vector<RNTupleSourceSpec> ntuples{
{"myElectrons", "electrons.root"}, {"myMuons", "muons.root"}};

auto processor = RNTupleProcessor::CreateJoin(ntuples, {"run", "event"});

for (const auto &entry : *processor) {
std::cout << "electron pt = " << *entry.GetPtr<float>("pt") << std::endl;
std::cout << "muon pt = " << *entry.GetPtr<float>("myMuons.pt") << std::endl;

}

: See the ntpl015_processor_join.C tutorial

RNTuple updates & RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente | EP R&D Software Working Group Meeting 12/17

https://root.cern/doc/master/ntpl015__processor__join_8C.html

Composability of the RNTupleProcessor

RNTupleProcessor

RNTupleBaseProcessor
RNTupleProcessor::Create(RNTupleOpenSpec)

RNTupleChainProcessor
RNTupleProcessor::CreateChain({RNTupleProcessor})

RNTupleJoinProcessor
RNTupleProcessor::CreateJoin({RNTupleProcessor}, {joinField})

Each processor implements the same interface for loading entries, allowing for arbitrary
composition ordering.

RNTuple updates & RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente | EP R&D Software Working Group Meeting 13/17

Chain-first approach

myElectrons
electrons1.root

myElectrons
electrons2.root

myMuons
muons1.root

myMuons
muons2.root

auto electrons = {Create({"myElectrons", "electrons1.root"}), Create({"myElectrons", "electrons2.root"})};
auto muons = {Create({"myMuons", "muons1.root"}), Create({"myMuons", "muons2.root"})};

auto electronChain = CreateChain(electrons);
auto muonChain = CreateChain(muons);

auto processor = CreateJoin({electronChain, muonChain}, {"run", "event"});

RNTuple updates & RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente | EP R&D Software Working Group Meeting 14/17

Join-first approach

myElectrons
electrons1.root

myElectrons
electrons2.root

myMuons
muons1.root

myMuons
muons2.root

auto emPair1 = {Create({"myElectrons", "electrons1.root"}), Create({"myMuons", "muons1.root"})};
auto emPair2 = {Create({"myElectrons", "electrons2.root"}), Create({"myMuons", "muons2.root"})};

auto electronMuonJoin1 = CreateJoin(emPair1, {"run", "event"});
auto electronMuonJoin2 = CreateJoin(emPair2, {"run", "event"});

auto processor = CreateChain({electronMuonJoin1, electronMuonJoin2});

RNTuple updates & RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente | EP R&D Software Working Group Meeting 15/17

Foreseen integration with RDataFrame

• The RNTupleProcessor will become the
under-the-hood processing engine in RDataFrame;
: Completely transparent to users!

• Opportunity to further evolve RDataSetSpec.
: This will become the interface for “building” the
RNTupleProcessor.

{
"samples": [
{

"identifier": "electrons",
"name": "myElectrons",
"files": ["electrons1.root",

"electrons2.root"],
"joinWith": {

"sample": "muons",
"joinOn": ["run", "event"],
"eventAlignment": "file"

},
},
{

"identifier": "muons",
"name": "myMuons",
"files": ["muons1.root",

"muons2.root"]
}

]
}

spec.json

RNTuple updates & RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente | EP R&D Software Working Group Meeting 16/17

Current status and outlook

• RNTupleChainProcessor and RNTupleJoinProcessor are currently available in ROOT master;
• Work towards enabling composing RNTupleProcessors is well underway;
• Integration with RDataFrame is planned for 2025;
• Performance profiling and optimization for unaligned joins is planned for 2025;
• Support for the RNTupleProcessor in distributed settings (through RDataFrame) is
foreseen.

RNTuple updates & RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente | EP R&D Software Working Group Meeting 17/17

	Combining data sets with the RNTupleProcessor

