Search for Higgs Boson Decays into Collimated Tau Lepton Pairs

Ali Garabaglu General Exam December 6th, 2024

Introduction

Major projects:

- FASER experiment: Contributed to the software alignment of the tracking detectors and neutrino studies with emulsion detector
 ATLAS experiment: Reconstruction
- and identification of $H \rightarrow \tau \tau$ and its measurement (focus of this talk)

Outline:

- 1. Why are we doing it?
 - i. The Standard Model
 - ii. Motivation for new physics

iii.Role of experiment

- 2. **How** are we doing it?
 - i. ATLAS detector
 - ii. Reconstruction and identification of

collimated tau pairs

iii. Higgs to $\tau\tau$ analysis

Particle Mass Range

The Standard Model

The standard model describes the fundamental particle interaction via the electroweak and strong forces

> • 6 quarks and 6 leptons (matter particles)

- 4 vector bosons (force mediators)
- 1 scalar boson (mass generator)

Hierarchy Problems

- Many Empirical and theoretical motivations exist for physics Beyond the Standard Model (BSM)
- Higgs hierarchy: SM doesn't stop the Higgs mass from reaching the Planck scale
- Yukawa coupling hierarchy: Higgs-fermion interaction strengths span a wide range

Higgs Production at the LHC

- 88% of Higgs production at the LHC is through gluon fusion mediated by a top quark
- Any modifications to the top Yukawa coupling or gluon fusion process will modify the Higgs production
- New physics that explains hierarchy problems can be probed in this process

EFT Interpretation

We consider extensions of the SM with dimension-6 operators

$$\mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d=6}} \frac{c_i}{\Lambda^2} O_i^{(6)} + \dots$$

Extract most important terms relevant to gluon fusion process

$$\mathcal{L}_{\text{eff}} = -\kappa_t \frac{m_t}{v} \bar{t}th + \kappa_g \frac{\alpha_s}{12\pi} \frac{h}{v} G^a_{\mu\nu} G^{\mu\nu\,a} + \mathcal{L}_{\text{QCD}}$$

 κ_t modifies the top κ_g modifies the gluon-Yukawa coupling Higgs interaction

arXiv:1405.4295, arXiv:1312.3317

In the SM $\kappa_t = 1$ and $\kappa_g = 0$. New physics will change these values

Cross Section

Where δ and ϵ capture different physics processes. Both are small at low p_t where the SM dominates, and grow to $\mathcal{O}(1)$ at $p_T^{cut} > 300 \text{ GeV}$

Models like MCHM and SUSY can predict specific values for these factors, enhancing their detection by probing κ_g and κ_t separately arXiv:1405.4295, arXiv:1312.3317

Ali Garabaglu — General Exam — December 6th, 2024

Model Specific Enhancements

- Here $c_t = \kappa_t = 1 \kappa_g$
- Several hypothetical points are shown, at higher momenta the degeneracy between the distributions breaks
- There is about 20% difference from SM for $\sigma(p_{T,H} > 300 GeV)$

arXiv:1405.4295

Part 1 **Beyond the standard model** 1. 2. BSM scenarios in boosted regime **Experimental context** 3.

Higgs Measurement

- We want to **measure the Higgs boson** production cross section as best as we can, specially in the high momentum regime
- Focusing on Higgs decay to Taus

Higgs Production at the LHC

$$N = \sigma \times L \times BR(H \to \tau\tau)$$

- Higgs production cross section (52 pb)
- Integrated luminosity (485 fb⁻¹)
- Branching ratio (6.3%)

In Run 2 and Run 3 we expect about 1 million Higgs to $\tau\tau$ events while in HL-LHC we expect about 10 million of such events

Importance of Boosted Higgs Decay to Taus

In the $p_T > 450 \text{ GeV}$ phase space the $\tau \tau$ channel is unexplored

Probing a New Higgs Phase Space

- The boosted di- τ analysis will be the first in ATLAS to explore this phase-space
- Probing the higher p_T tail of the old analysis
- New analysis reconstructs seven times more events at $p_T^H > 450 \text{ GeV}$

CERN

Ali Garabaglu — General Exam — December 6th, 2024

ATLAS Detector

- The ATLAS experiment is one of the two general purpose detectors at the LHC constructed to probe proton-proton collisions
- designed to look for new physics and precision measurements of the Standard Model

ATLAS Sub-Detectors

ATLAS Coordinate System

- ATLAS is a cylindrical detector
- The transverse plane, which is perpendicular to the beam line, is essential as it is the plane where momentum is conserved
- Based on these the coordinate system uses η and ϕ

$$\eta \equiv -\ln\left[\tan\left(\frac{\theta}{2}\right)\right]$$

QCD Background

Collision: Protons collide. Often energetic quarks or gluons come out Fragmentation: The quark "fragments" into a "soup" of quarks and gluons Hadronization: Due to color confinement quarks and gluons can't propagate freely so they "hadronize"

Taus at the LHC

Currently focusing on the fully hadronic final stateTaus decay before reaching the detector

Hadronic Tau Decay

Hadronic Decays of a Pair of Collimated Taus

DiTau Object

The boosted taus are reconstructed from a large-R jet (R = 1.0). The subjets are reclustered within a smaller (R = 0.2) jet

Ali Garabaglu — General Exam — December 6th, 2024

DiTau Reconstruction

Boosted Di- τ reconstruction extends reconstruction efficiency down to $\Delta R(\tau_1, \tau_2) \approx 0.2$

$$\Delta R_{\tau_1 \tau_2} = \frac{2m^H}{p_t^H}$$

arXiv:2407.16320

Analysis Workflow

We have so far discussed the first three steps and now move to the last two steps

Event Selection

Recoil Jet

- Veto any muons or electrons that can fake the two taus
- Require p_T of DiTau object to be bigger than 300 GeV
- Require 1 or 3 tracks in each Tau jet

Ali Garabaglu — General Exam — December 6th, 2024

Event Selection: DiTau Identification

Without DiTau ID

With DiTau ID

DiTau identification cut plays a significant role in reducing QCD background

Ali Garabaglu — General Exam — December 6th, 2024

DiTau Identification

- ${}^{\bullet}\mathrm{My}$ qualification task focused on the DiTau Identification step
- •Original DiTau tagger used a Boosted Decision Tree (BDT) and was developed for early Run 2
- •This task updated the tagger for all of Run 2 and incorporated Run 3
- •Also explored more advanced algorithms

BDT Results

- •We use the Receiver Operating Characteristic (ROC) curve as one metric to measure performance
- •We see **improved performance** from the new BDT

BDT Signal Efficiency

- Signal efficiency as a function of *transverse momentum*
- The **flatter the better** as we do not want our classifier to be dependent on kinematics

How to Improve the Measurement?

Role of Graphs in Jet Identification

Computes features of *i* using aggregated features Transform features of neighbors (learnable) (learnable) $f(x_i) = \phi \left[x_i, \sum_{j \in \mathcal{N}_i} \psi(x_i, x_j) \right]$ New feature of node *i* Permutation invariant aggregation operator arXiv:2104.13478

- Graph Neural Net (GNN)
- GNN and transformer architectures have been shown to perform very well in HEP applications
- Looking at neural networks trough the lens of graph can reveal underlying features like **permutation invariants** of the networks
 - Ordering of clusters and tracks is not important in identifying different kinds of jets
Machine Learning Architectures

DeepSets

$$f(x_i) = \phi\left(x_i, \sum_{j \in \mathcal{N}_i} \psi(x_j)\right)$$

We assume fully connected graphs but no coefficients of interaction

Convolution

$$f(x_i) = \phi\left(x_i, \sum_{j \in \mathcal{N}_i} c_{ij} \psi(x_j)\right)$$

Here a constant is added that specifies importance of node *j* to node *i's* transformation. Order matters here.

arXiv:1609.02907

Attention

$$f(x_i) = \phi\left(x_i, \sum_{j \in \mathcal{N}_i} a(x_i, x_j)\psi(x_j)\right)$$

Here *a* is a learnable importance constant "selfattention mechanism"

arXiv:1710.10903

OmniLearn

GNN

Transformer

Low Level Features e.g. track p_t

High Level Features e.g. $p_T^{sj_2}/p_T^{LRJ}$

This framework combines both GNNs and transformers

 First a GNN is built using low level features
High level features are added into transformer blocks along with the low level features to further enhance performance

arXiv:2404.16091

+

Performance Improvements

- We see large improvement over the current BDT
- Back of the envelope estimate indicates a ~60% improvement in significance for the analysis
- Implemented in analysis framework and ready for wider adoption

OmniLearn Performance in Analysis

An initial test with analysis signal samples shows a **doubling of** signal efficiency at a fixed background rejection rate using the new architecture compared to the BDT

Summary of DiTau Identification

- Trained and tuned a new Di- τ tagger for Run 2/3
- Available in Athena for use in all ATLAS analyses
- ATLAS note available \underline{here}
- Results shown in multiple ATLAS meetings and the TauCP + HLeptons <u>Workshop</u>
- •ATLAS author
- •New architecture is expected to substantially improve analysis performance

Backgrounds

Backgrounds estimated using simulations: SM events with two true taus $Z(\rightarrow \tau\tau) + jets$, ttbar + single top, Di-boson, $Z(\rightarrow ll)+jets$

Fakes estimated using a data-driven technique: Events with at least one subjet coming from a jet faking an hadronic tau (QCD, W+jets) Fake-Factor technique

Fake Factor Method

- Same Sign (SS):
- Jet1 charge × Jet2 charge is positive
- •Opposite Sign (OS): Jet1 charge × Jet2 charge is negative
- Fake factors: (SS and Anti-ID data) / (SS and ID data)

Closure Test

- Plotting (SS&ID region) vs (SS&anti-ID region * FF)
- See good agreement in p_T distribution

Modeling Performance: Collinear Mass

We see good agreement in the collinear mass. Which means good kinematic modeling of di- τ and MET object.

MultiVariate Analysis (MVA)

- •While a single variable provides some discrimination power, a multivariate approach allows us to exploit the combined discriminative power of multiple variables.
- •A BDT is trained on the full Run 2 dataset using nine features

Modeling Performance: MVA

MVA agreement between background and data looks good, work in progress to improve

Ali Garabaglu — General Exam — December 6th, 2024

Signal Significance

- Significance: sum in quadrature of σ in each bin where $\sigma = \frac{S}{\sqrt{B}}$
- MVA distribution has a significance of 2.11. While collinear mass gives 0.94
- This includes all of Run 2

Fit Result

Signal strength $\mu = \frac{\sigma_{obs}}{\sigma_{SM}}$ is extracted from the fit along with an extensive set of systematic uncertainties

signal strength:
$$\mu = 1^{+0.63}_{-0.55}$$

significance for $\mu = 1$: 2.097

From this we can calculate the cross section of Higgs boson production to taus

Analysis Outlook

	Integrated Luminosity (fb ⁻¹)	Number of measured events $N = L\sigma$	Significance $\sigma_{i+1} \approx \sigma_i \sqrt{\frac{L_{i+1}}{L_i}}$	Expected Significance with OmniLearn
Run 2	140	33	2	~3.2
Run 2 + (partial) 3	140+200	~80	~3.1	~4.9
Run 2 + 3	140+345	~114	~3.7	~5.8
Run 2 + 3 + HL-LHC	140+345+3000	~819	~10	~16

Expect improvement with Run 3 data, but much more with HL-LHC

- Di- τ tagger as part of ATLAS qualification task was completed
- Leading the Boosted $H \rightarrow \tau \tau$ analysis
 - Background studies
 - MVA development
 - A new and improved $Di-\tau$ tagger
 - Work presented multiple ATLAS meetings including in Tau | Leptons <u>meetings</u>
 - Analysis progressing well

Timeline

Acknowledgments

- Advisor Quentin Buat
- Committee members Isabel Garcia-Garcia,

Shih-Chieh Hsu, Max Parsons, Gordon Watts

- Physics staff and faculty
- CERN collaboration

Thank You

Importance of ML Tools

"New directions in science are launched by new tools much more often than by new concepts. The effect of a concept-driven revolution is to explain old things in new ways. The effect of a tool-driven revolution is to discover new things that have to be explained" - Freeman Dyson

Fit Result

- We have the infrastructure ready for fitting
- Fit significance in agreement with estimate
- Pull plot performance is as expected

signal strength: $\mu = 1^{+0.63}_{-0.55}$ significance for $\mu = 1 : 2.097$

Full Event Selection

- Electrons (used for veto):
 - \circ loose working point
 - $|\eta_{cluster}| < 2.47$ $(excl. 1.37 < |\eta_{cluster}| < 1.52)$
 - $\circ p_T > 15 \text{ GeV}$
- Muons (used for veto):
 - \circ $\$ loose working point
 - $\circ \quad |\eta| < 2.5$
 - $\circ p_T > 10 \text{ GeV}$
- Jets:
 - \circ collection: EMPFlow
 - $\circ \quad p_T > 20 \; {\rm GeV}$
 - \circ pass (f)JVT cut
 - $\circ \quad btagging WP: DL1d \ 70\%$

- Single taus (only used for ORL)
 - $\circ p_T > 20 \text{ GeV}$
 - \circ nTracks = {1, 3}
 - \circ tau ID: RNN score > 0.01
- Ditau (at least 1):
 - collection: DiTauJets
 - $\circ p_T > 300 \text{ GeV}$
 - nTracks: {1,3} on (sub)lead subjet
 - \circ ID cut: BDT score > 0.96
- Missing Transverse Energy (MET): A modified version of MET HPTO, with Di- τ and all other jets in the event is used, with $\Delta R(jet, ditau) > 1.0$
- Triggers:
 - Single jet (0.4) or large-R jet

BDT Training

- The background in this classification task is QCD multi-jet events and the signal is different particles decaying to taus
- Seventeen variables are used in training, chosen from a set of kinematic and geometric variables of the Di- τ objects that show the best classification power

MVA Training

- MVA BDT Features:
 - \circ leading subjet p_T
 - \circ subleading subjet p_T
 - Visible Mass
 - Collinear Mass
 - $\circ \Delta R$
 - MET
 - MET significance
 - MET centrality
 - \circ x₁ and x₂ collinear variables

MVA Optimization

- Using 3-fold training
 - Splitting the training and testing data this way allows for usage of all data at inference time
- Hyper parameter (learning rate, depth, # of estimators) tuning of the BDT is done to maximize significance

MVA Feature Importance Study

- Also performed feature importance studies
- Choose most relevant set of features and asses importance of each to the model
- Only the top performing ones are chosen for final BDT

Fake Factor Method

- Fake factors: (Same-Sign (SS) and Anti-ID data) / (SS and ID data)
- Monte Carlo contributions are subtracted from the data in each region

Closure Test Improvement

More Modeling Performance Plots

Also see reasonably good modeling in subjet kinematics

Modeling Performance: MET

Good modeling at higher tail of MET, while a bit of mismodeling and lower end.

Probing a New Higgs Phase Space

- The boosted di- τ analysis will be the first one in ATLAS to explore this phase-space
- Probing the higher p_T tail of the resolved analysis

OmniLearn Workflow

OmniLearn: Signal Efficiency

- The working point used to define signal efficiency was selected to ensure that both models have the same efficiency
- We observe that OmniLearn exhibits a consistent response across the plotted features even without weights in training
OmniLearn: Background Rejection

• Since by construction the signal efficiency is supposed to be the same, we expect and observe stronger background rejection in OmniLearn compared to the BDT

• The limited statistics in OmniLearn are a result of the working point effectively rejecting a substantial portion of the background

BDT Signal Efficiency

- Signal efficiency as a function of *pseudo-rapidity*, *average interactions per bunch crossing* and *transverse momentum*
- The **flatter the better** as we do not want our classifier to be dependent on these parameters

OmniLearn Training Dataset

- Using the same signal sample as GN2X
 - mc23_13p6TeV.802168.Py8EG_A14NNPDF23LO_VHtautau_flatmasspTFilt_hadhad.rec
 on.AOD.e8558_s4162_r14622
- Only the JZ samples as GN2X, will add others soon.
 - o mc23_13p6TeV:mc23_13p6TeV.*.Py8EG_A14NNPDF23LO_jj_JZ*.recon.AOD.e8514_s 4162_r14622
- THOR is used to process the AOD's and outputs nTuples with di-tau jet and track information.
 - \circ Cuts: # subjets >= 2, 1 or 3 tracks in leading and subleading subjets.
- Jet variables: ditau_R_max_lead, ditau_R_max_subl, ditau_R_tracks_subl, ditau_R_isotrack, ditau_d0_leadtrack_lead, ditau_d0_leadtrack_subl, ditau_f_core_lead, ditau_f_core_subl, ditau_f_subjet_subl, ditau_f_subjets, ditau_f_isotracks, ditau_m_core_lead, ditau_m_core_subl, ditau_m_tracks_lead, ditau_n_trac
- **Track variables:** trackDeltaEta, trackDeltaPhi, track_pT, d0TJVA, z0TJVA, dR, numberOfInnermostPixelLayerHits, numberOfPixelHits, numberOfSCTHits, charge

ATLAS Qualification Task

- BDT are just a series of cuts. This methods has traditionally been used in HEX to select events. BDT is just a automation and improvement of this cut based method
- Boosted comes from fact that in decision trees are NP Complete so need to run approximation algorithms which could lead to suboptimal cuts that lead to a optimal end result so want a ensemble of trees and averaging of them to find optimal result

ATLAS Trigger

- 1. Level-1 (Hardware Trigger):
 - First stage of event selection
 - Uses custom hardware (FPGAs and ASICs)
 - 40 MHz to 100 kHz
 - Makes fast decisions based on limited detector information
 - Focuses on identifying high-energy objects like electrons, muons, jets, and missing transverse energy
- 2. High-Level Trigger (HLT) Level-2 and Event Filter:
 - Software-based trigger running on a large computing farm
 - Operates in two stages: Level-2 and Event Filter
 - 100 kHz to 4 kHz
 - Performs more sophisticated and computationally intensive event reconstruction
 - Uses more detailed detector information compared to Level-1
 - Applies more complex selection criteria for physics analysis

Branching Ratios

Particle Lifetimes

Izaak Neutelings

$$\gamma\beta c\tau(\Delta R = 0.4) = \frac{pc}{mc^2}c\tau = \frac{300GeV}{1.7GeV}87\mu m = 15mm$$

Ali Garabaglu — General Exam — December 6th, 2024

The Higgs Boson

The standard model described in terms of groups: $SU(3)_c \times SU(2)_L \times U(1)_Y$

How do particles get their masses?

Simplified version of EWSB with just U(1):

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + |D_{\mu}\phi|^2 - V(\phi) \qquad \begin{vmatrix} D_{\mu} = \partial_{\mu} - ieA_{\mu} \\ V(\phi) = \mu^2 |\phi|^2 + \lambda (|\phi|)^2 \end{vmatrix}$$

1.) $\mu^2 > 0$: potential perseveres symmetries of the Lagrangian with lowest energy state at $\phi = 0$

2.) $\mu^2 < 0$: now lowest every state is at $\langle \phi \rangle = \sqrt{-\frac{\mu^2}{2\lambda}}$

 $\langle \phi \rangle$ breaks global U(1) symmetry. This gives rise to a massive photon and a scalar field h, called the Higgs boson

Ali Garabaglu — General Exam — December 6th, 2024

 $V(h) = \frac{1}{2}m_H^2 h^2 + \lambda_3 v h^3 + \frac{1}{4}\lambda_4 h^4 + O(5)$

Jet Reconstruction

- Unstable particles produced in high-energy collisions decay after distance $\gamma v \tau$
 - Long-lived particles (μ^{\pm} , n, π^{\pm} , K^{\pm}) can travel several meters in detectors before decaying
- All charged particles lose energy via ionization, with energy loss $\frac{1}{\rho} \frac{dE}{dx} \approx -\frac{4\pi\hbar^2 c^2 \alpha^2}{m_e v^2 m_u} \frac{Z}{A} \left\{ \ln \left[\frac{2\beta^2 \gamma^2 m_e c^2}{I_e} \right] \beta^2 \right\}$
 - Energy loss doesn't depend strongly on material except density
 - **Muons** lose energy almost entirely through ionization making them **highly penetrating**
- High-energy **electrons** and **photons** lose energy through **EM cascades** (bremsstrahlung and e^+e^- pair production)
 - Dominant for electrons at $E_c \sim \frac{800}{Z}$ MeV and photons at $E_{\gamma} > 10$ MeV
 - Energy reduced by 1/e after radiation length $x_0 \approx \frac{1}{4\alpha n Z^2 r_e^2 \ln (287/Z^{1/2})}$
- Charged hadrons can interact with nuclei via strong force, creating hadronic cascades which can vary in structure depending on interaction
 - Often contain **EM component** via production of $\pi^0 \rightarrow \gamma \gamma_0$

Luminosity and Cross Section

- **Partial decay rates** (or widths) describe rate at which initial state particle decays to particular final state which **sum to the total decay width** $\Gamma = \sum \Gamma_{j}$ related to the lifetime $\tau = \frac{1}{\Gamma}$
 - Branching ratios are given by $BR(j) = \frac{\Gamma_j}{\Gamma}$.
- Cross sections are ratio between interaction rate per target particle and incident particle flux
 - Differential cross sections can express angular/energy dependence as $\frac{d\sigma}{d\Omega}$ or $\frac{d\sigma}{dE}$
- Instantaneous luminosity relates interaction rate to cross section in colliders $\frac{dN}{dt} = \mathscr{L}_{inst} \times \sigma$ where $\mathscr{L}_{inst} = \frac{N_1 N_2 f N_b}{4\pi \sigma_x \sigma_y}$

The Standard Model

 $3 \neq 2$

Focusing on very small scales (high energies) In this limit $E \approx p \implies m = 0$

Massive particle has Spin with 3 degrees of freedom

Massless particle also has spin (helicity) but with 2 degrees of freedom

We consider the scattering of W bosons. Again assuming they are near this **massless** limit.

At around energy values of **1000 GeV this breaks**. Meaning we need new physics to avoid this.

The Need for New Physics

1 = 1

Higgs Spin = 0Higgs Spin = 0Massless degrees of freedom = 1Massive degrees of freedom = 1

Why isn't the Higgs mass enormous?

S = 0

What options do we have?

At long distances we have spin choices of (0, 1/2, 1, 3/2, 2)

 $X_{spin=0} = Higgs$

We first measured the Higgs mass in 2012 at 125 GeV

arXiv:1207.7214

Higgs Production at the LHC

Higgs Measurement Improvements at HL-LHC

Expect a 120% reduction in cross-section uncertainty in ggH channel at p_T values

<u>arXiv:2307.07772</u>

All Dimension-6 Operators Considered

All the operators that are considered in the papers:

y: modify Top Yukawa, H: modify kinematic terms of the Higgs field, g: introduce direct coupling between Higgs and gluon, ~g: introduce CP-violating coupling between Higgs and gluon

But in the papers only consider CP-conserving effects are considered so the last term drop out.

$$\mathcal{O}_{y} = \frac{y_{t}}{v^{2}} |H|^{2} \bar{Q}_{L} \tilde{H} t_{R} , \qquad \mathcal{O}_{H} = \frac{1}{2v^{2}} \partial_{\mu} |H|^{2} \partial^{\mu} |H|^{2} , \\ \mathcal{O}_{g} = \frac{\alpha_{s}}{12\pi v^{2}} |H|^{2} G_{\mu\nu}^{a} G^{a\,\mu\nu} , \qquad \widetilde{\mathcal{O}}_{g} = \frac{\alpha_{s}}{8\pi v^{2}} |H|^{2} G_{\mu\nu}^{a} \widetilde{G}^{a\,\mu\nu} ,$$

$$\kappa_t = 1 - \operatorname{Re}(C_y) - C_H/2$$
 $\kappa_g = C_g$

Details of δ and ϵ

1. Matrix Element Structure: The total matrix element for Higgs production is a sum of the SM (top-Yukawa dominated) contribution $M_{\rm IR}$ and the new physics (direct gluon-Higgs interaction) contribution $M_{\rm UV}$:

 $M_{
m total} = c_t M_{
m IR} + \kappa_g M_{
m UV}.$

2. Cross-Section: The cross-section depends on the squared modulus of $M_{\rm total}$:

 $|M_{\mathrm{total}}|^2 = |c_t M_{\mathrm{IR}}|^2 + |\kappa_g M_{\mathrm{UV}}|^2 + 2\mathrm{Re}(c_t M_{\mathrm{IR}}\kappa_g^* M_{\mathrm{UV}}^*).$

- The first term is the pure SM contribution ($|M_{
 m IR}|^2$).
- The second term is the pure new physics contribution ($|M_{
 m UV}|^2$).
- The third term is the interference (${
 m Re}(M_{
 m IR}M_{
 m UV}^*)$).
- 3. Normalized Cross-Section: When normalizing by the SM cross-section, you divide by $|M_{\rm IR}|^2$. This introduces:
 - $\delta(p_T^{\mathrm{cut}})$ to capture the interference's relative importance.
 - $\epsilon(p_T^{\mathrm{cut}})$ to capture the quadratic term's relative importance.
- 4. Dependence on p_T^{cut} : Both δ and ϵ are integrals over p_T above a certain threshold p_T^{cut} . At high p_T , the relative contributions of M_{IR} and M_{UV} change, leading to increasing sensitivity to κ_g .

$$\delta(p_T^{\text{cut}}) = \frac{2 \int_{p_T^{\text{cut}}}^{p_T^{\text{cut}}} dp_T d\Omega Re(\mathcal{M}_{IR}(m_t)\mathcal{M}_{UV}^*)}{\int_{p_T^{\text{cut}}}^{\infty} dp_T d\Omega |\mathcal{M}_{IR}(m_t)|^2} - 2,$$

$$\epsilon(p_T^{\text{cut}}) = \frac{\int_{p_T^{\text{cut}}}^{\infty} dp_T d\Omega |\mathcal{M}_{UV}|^2}{\int_{p_T^{\text{cut}}}^{\infty} dp_T d\Omega |\mathcal{M}_{IR}(m_t)|^2} - 1.$$

Ali Garabaglu — General Exam — December 6th, 2024

Anti-Kt Algorithm

- Jet reconstruction should not be affected by additional soft radiation or collinear splitting (**infrared** and **collinear safety** or IRC safety) which is common in higher order QCD
- Sequential recombination algorithms build jets by calculating inter-particle $d_{ij} = \min(k_{ti}^{2p}, k_{tj}^{2p}) \frac{\Delta_{ij}^2}{R^2}$ and beam distances $d_{iB} = k_{ti}^{2p}$ where $\Delta_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$ and R, p are parameters
 - If d_{ij} is the smallest of these, i and j are combined and process repeats
 - If d_{iB} is the smallest of these, the item i is called a jet and removed

 $k_t = p_T$ y = rapidity

How SUSY can Effect the Kappas

1. Supersymmetry (SUSY):

- Stop Quarks:
 - In SUSY, the stop quarks (\tilde{t}_1 and \tilde{t}_2) appear in the gluon-Higgs loop and modify the gluon fusion cross-section.
 - Their contribution affects both c_t (through changes in the top Yukawa coupling) and κ_g (by adding a new loop-induced interaction).
- Implications for EFT:
 - SUSY predicts specific relations between c_t , κ_g , and the stop masses $m_{\tilde{t}_1}$, $m_{\tilde{t}_2}$, and mixing parameters like A_t :

$$\Delta c_t \propto rac{\mu A_t}{m_{ ilde{t}_1}^2}, \quad \Delta \kappa_g \propto rac{1}{m_{ ilde{t}_1}^2} + rac{1}{m_{ ilde{t}_2}^2}.$$

• This means the EFT coefficients are calculable from SUSY parameters.

How MCHM can Effect the Kappas

2. Minimal Composite Higgs Model (MCHM):

- Top Compositeness:
 - In MCHM, the top quark is partially composite, leading to modified top Yukawa couplings. This affects c_t , which deviates from its SM value of 1.
- Heavy Resonances:
 - MCHM introduces new fermionic resonances that contribute to the gluon fusion loop, modifying κ_q.
- Implications for EFT:
 - MCHM predicts specific forms for the EFT coefficients. For example:

$$c_t \sim 1-\xi, \quad \kappa_g \sim \xi,$$

where $\xi = v^2/f^2$ is a parameter describing the Higgs compositeness scale (f is the decay constant of the composite sector).

Many motivations for new physics beyond the standard model

EFT Enhancements

In EFT interpretation large p_T^H regions show enhanced sensitivity to c_{HG}

Ali Garabaglu — General Exam — December 6th, 2024