

Requirement for crab cavity and instability monitoring

X. Buffat, R. De Maria, N. Mounet, R. Tomas

HL-LHC High Bandwidth Pickup BPM review 15.01.2025

Content

- Crab leakage
- > Emittance growth
- Instabilities
- Conclusion

With high intensity beams, the leakage of the crab bump must be contained below $0.1\sigma_{x,y} @ 1\sigma_z$ mainly to avoid interferring with the collimation hierarchy (also: physical/dynamic aperture, collective effects)

- With high intensity beams, the leakage of the crab bump must be contained below $0.1\sigma_{x,y} @ 1\sigma_z$ mainly to avoid interferring with the collimation hierarchy (also: physical/dynamic aperture, collective effects)
 - Larger leakage is allowed during setup phases (worst case : cavities on one side off)

- With high intensity beams, the leakage of the crab bump must be contained below $0.1\sigma_{x,y} @ 1\sigma_z$ mainly to avoid interferring with the collimation hierarchy (also: physical/dynamic aperture, collective effects)
 - Larger leakage is allowed during setup phases (worst case : cavities on one side off)
 - \rightarrow WB BPM must be sensitive to the minimal leakage (0.03 $\sigma_{x,y} @ 1\sigma_z$) up to the worst case

(2.2**σ**_{x,y} @ 1**σ**_z)

- With high intensity beams, the leakage of the crab bump must be contained below $0.1\sigma_{x,y} @ 1\sigma_z$ mainly to avoid interferring with the collimation hierarchy (also: physical/dynamic aperture, collective effects)
 - Larger leakage is allowed during setup phases (worst case : cavities on one side off)
 - \rightarrow WB BPM must be sensitive to the minimal leakage (0.03 $\sigma_{x,v} @ 1\sigma_z$) up to the worst case

(2.2 $\sigma_{x,y} @ 1\sigma_{z}$)

- At each IR, there can be a source of crab leakage in either plane
 - Minimal leakage (not exact π phase advance between cavities on both sides)
 - Left-right voltage imbalance
 - Cavity tilt, local coupling

- With high intensity beams, the leakage of the crab bump must be contained below $0.1\sigma_{x,y} @ 1\sigma_z$ mainly to avoid interferring with the collimation hierarchy (also: physical/dynamic aperture, collective effects)
 - Larger leakage is allowed during setup phases (worst case : cavities on one side off)
 - $_{\rightarrow}$ WB BPM must be sensitive to the minimal leakage (0.03 $\sigma_{x,y}$ @ $1\sigma_z$) up to the worst case

(2.2**σ**_{x,y} @ 1**σ**_z)

- At each IR, there can be a source of crab leakage **in either plane**
 - Minimal leakage (not exact π phase advance between cavities on both sides)
 - Left-right voltage imbalance
 - Cavity tilt, local coupling
- In order to uniquely determine the source, one would require two WB BPMs placed at about π/2 from each other, on each machine side in each plane and each beam

- With high intensity beams, the leakage of the crab bump must be contained below $0.1\sigma_{x,y} @ 1\sigma_z$ mainly to avoid interferring with the collimation hierarchy (also: physical/dynamic aperture, collective effects)
 - Larger leakage is allowed during setup phases (worst case : cavities on one side off)
 - $_{\rightarrow}$ WB BPM must be sensitive to the minimal leakage (0.03 $\sigma_{_{x,y}} @ 1 \sigma_{_z}$) up to the worst case

(2.2**σ**_{x,y} @ 1**σ**_z)

- At each IR, there can be a source of crab leakage in either plane
 - Minimal leakage (not exact π phase advance between cavities on both sides)
 - Left-right voltage imbalance
 - Cavity tilt, local coupling

In order to uniquely determine the source, one would require two WB BPMs placed at about π/2 from each other, on each machine side in each plane and each beam

- It is possible to operate with less pickups, the identification and correction of the source would be more time consuming (voltage scans in each cavities)

CERN

- Two possibilities are
 considered :
 - WB BPM close to the crab cavities
 - Higher signal (required range: 0.4 to 30 mrad)
 - ~ optics independent
 - Not necessarily π/2 between IR 1 and IR 5 pickups

- Two possibilities are
 considered :
 - WB BPM close to the crab cavities
 - Higher signal (required range: 0.4 to 30 mrad)
 - ~ optics independent
 - Not necessarily π/2 between IR 1 and IR 5 pickups
 - WB BPMs in IR4
 - Lower signal (required range:
 0.05 to 3 mrad)
 - Optics dependent
 - Can be chosen close to $\pi/2$
 - Only one side of the machine is covered → Can't disentangle between sources in IR 1 or 5 4/14

L. Medina, et al., CERN-ACC-2018-0003

L. Medina, et al., CERN-ACC-2018-0003

L. Medina, et al., CERN-ACC-2018-0003

3.0

• Existing ADT with 10 turns damping time.

L. Medina, et al., CERN-ACC-2018-0003

, Existing ADT with 10

L. Medina, et al., CERN-ACC-2018-0003

, Existing ADT with 10 turns damping time.

No
feedbacksWith
feedbacksPhase noise
[%/h]11.2*1.1*Amplitude noise
[%/h]4.2*0.9Require
by a factor of the spin

Requires a suppression
by a factor 4-5 to reach the specification

5/14

→ Impact on the integrated
 luminosity : -1 % for every
 2 %/h of emittance growth

 \rightarrow A feedback based on 'A synchronous I/Q demod of PU signal at 2x400 MHz' was proposed*

The kicker is the crab cavities themselves, see next talk by D. Valuch.

L. Medina, et al., CERN-ACC-2018-0003

No
feedbacksWith
feedbacksPhase noise
[%/h]11.2*Amplitude noise
[%/h]4.2*0.91.1

, Existing ADT with 10 turns damping time.

→ Alternatively the new feedback could address both phase and amplitude noise, keeping the ADT at a lower gain for instabilities (~100 turns)

Requires a suppression

 by a factor 4-5 to reach the specification

→ Impact on the integrated
 luminosity : -1 % for every
 2 %/h of emittance growth

 \rightarrow A feedback based on 'A synchronous I/Q demod of PU signal at 2x400 MHz' was proposed*

The kicker is the crab cavities themselves, see next talk by D. Valuch.

L. Medina, et al., CERN-ACC-2018-0003

No
feedbacksWith
feedbacksPhase noise
[%/h]11.2*1.1*Amplitude noise
[%/h]4.2*0.9

, Existing ADT with 10 turns damping time.

→ Alternatively the new feedback could address both phase and amplitude noise, keeping the ADT at a lower gain for instabilities (~100 turns)

Requires a suppression

 by a factor 4-5 to reach the specification

→ Impact on the integrated
 luminosity : -1 % for every
 2 %/h of emittance growth

 \rightarrow A feedback based on 'A synchronous I/Q demod of PU signal at 2x400 MHz' was proposed*

- The kicker is the crab cavities themselves, see next talk by D. Valuch.
- Recommendation: Keep the demodulation frequency at 400MHz to avoid generating beam instabilities with high feedback gain (see backur) *P. Baudrenghien, WP2/WP4 meeting 23.03.2021

- Tolerances on noise are set by WP4 to meet the specified emittance growth (WB BPM in IRs 1 and 5)*
 - Turn-by-turn, single bunch position < 3.9 μm, angle < 0.1 mrad (averaged over 3.6 μs)

- Tolerances on noise are set by WP4 to meet the specified emittance growth (WB BPM in IRs 1 and 5)*
 - Turn-by-turn, single bunch position < 3.9 μm, angle < 0.1 mrad (averaged over 3.6 μs)
 - Note that this functionality (i.e. low noise) can be relaxed for large crab angles (corresponding to setup phases)

- Tolerances on noise are set by WP4 to meet the specified emittance growth (WB BPM in IRs 1 and 5)*
 - Turn-by-turn, single bunch position < 3.9 μm, angle < 0.1 mrad (averaged over 3.6 μs)
 - Note that this functionality (i.e. low noise) can be relaxed for large crab angles (corresponding to setup phases)
- At the moment, 2 WB BPMs per IR are considered, in the crabbing plane on each side

- Tolerances on noise are set by WP4 to meet the specified emittance growth (WB BPM in IRs 1 and 5)*
 - Turn-by-turn, single bunch position < 3.9 μm, angle < 0.1 mrad (averaged over 3.6 μs)
 - Note that this functionality (i.e. low noise) can be relaxed for large crab angles (corresponding to setup phases)
- At the moment, 2 WB BPMs per IR are considered, in the crabbing plane on each side
 - In view of correcting the crab leakage (functionality D ?), it would be favourable to install them on both planes on each sides of each IR for each beam

- Tolerances on noise are set by WP4 to meet the specified emittance growth (WB BPM in IRs 1 and 5)*
 - Turn-by-turn, single bunch position < 3.9 μm, angle < 0.1 mrad (averaged over 3.6 μs)
 - Note that this functionality (i.e. low noise) can be relaxed for large crab angles (corresponding to setup phases)
- At the moment, 2 WB BPMs per IR are considered, in the crabbing plane on each side
 - In view of correcting the crab leakage (functionality D ?), it would be favourable to install them on both planes on each sides of each IR for each beam
- With the IR4 option, it is not possible to distinguish the location of the source

*P. Baudrenghien and T. Mastoridis, Phys. Rev. Accel. Beams 27, 051001 (2024) 6/14

 The head-tail monitor is mostly used to identify instabilities (unexpected events / MDs)

- The head-tail monitor is mostly used to identify instabilities (unexpected events / MDs)
 - Low order head-tail modes are expected in the LHC
 - $\ensuremath{\,\rightarrow\,}$ The sampling rate of the existing system is at the edge

- The head-tail monitor is mostly used to identify instabilities (unexpected events / MDs)
 - Low order head-tail modes are expected in the LHC
 - $\rightarrow\,$ The sampling rate of the existing system is at the edge
 - High oscillation amplitudes are reached during an instability → No significant gain from higher resolution

- The head-tail monitor is mostly used to identify instabilities (unexpected events / MDs)
 - Low order head-tail modes are expected in the LHC
 - $\ensuremath{\rightarrow}$ The sampling rate of the existing system is at the edge
 - High oscillation amplitudes are reached during an instability → No significant gain from higher resolution
 - Long acquisition buffers and fast triggers are crucial for such measurements

- The head-tail monitor is mostly used to identify instabilities (unexpected events / MDs)
 - Low order head-tail modes are expected in the LHC
 - $\ensuremath{\rightarrow}$ The sampling rate of the existing system is at the edge
 - High oscillation amplitudes are reached during an instability → No significant gain from higher resolution
 - Long acquisition buffers and fast triggers are crucial for such measurements

- HT based chromaticity measurement is limited by both sampling rate and resolution with present system
 - No strong push to improve from WP2 given the lack of maturity of the measurement technique and the existence of alternatives

Conclusion

- Crab leakage:
 - 0.4 to 30 mrad (30 μ m to 2.2mm @ σ_z) for WB BPM next to the CC (Both planes on both sides of the IP would ease operation)
 - 0.05 to 3 mrad (6 to 500 μ m @ σ_z) for WB BPM in IR4 (two per beam and per plane)
- Noise feedback: 2 % / h
 - Noise on single bunch position < 3.9 μm
 - Noise on angle < 0.1 mrad
- Instabilities : The performance of the current HT monitor is acceptable

Measured crabbing

 First crabbing measurements at the LHC (beam-beam induced) are based on a fit over the core of the beam (<σ₂)

- Using a linearised model, a strong instability is observed consistently with two approaches :
 - The circulant matrix model (BimBim)
 - Multiparticle tracking (COMBI)

- Using a linearised model, a strong instability is observed consistently with two approaches :
 - The circulant matrix model (BimBim)
 - Multiparticle tracking (COMBI)
- In this first step several aspects were neglected :
 - RF curvature
 - Energy change
 - Delay between measurement and kick
 - Bandwidth of cavities
 - Beam-beam interactions

- Using a linearised model, a strong instability is observed consistently with two approaches :
 - The circulant matrix model (BimBim)
 - Multiparticle tracking (COMBI)
- In this first step several aspects were neglected :
 - **RF** curvature
 - Energy change
 - Delay between measurement and kick
 - Bandwidth of cavities
 - Beam-beam interactions
- \rightarrow A multibunch approach with two beams is needed to assess the beam stability in a realistic configuration → PyPLINE

https://github.com/PyCOMPLETE/PyPLINE

[10⁻⁴/turn]

Vax 3AQ 2

-4/turn]

6

- The strongest instability driven by the CC amplitude feedback is transverse headtail mode two nodes
 - This instability does not occur for demodulation frequencies well below the spectrum of mode 2 (<500 MHz)

CERN

- The strongest instability driven by the CC amplitude feedback is transverse headtail mode two nodes
 - This instability does not occur for demodulation frequencies well below the spectrum of mode 2 (<500 MHz)
- The instability was not observed previously by T. Mastoridis

 \rightarrow The simulations did not feature the demodulation

CC feedback with beam-beam (X. Buffat, et al. @ WP2 meeting 21.03.2023)

For the specific configuration studied, beambeam interactions at IPs 1 and 5 provide sufficient Landau damping to stabilise the instability driven by the crab cavity amplitude feedback

CC feedback with beam-beam (X. Buffat, et al. @ WP2 meeting 21.03.2023)

- For the specific configuration studied, beambeam interactions at IPs 1 and 5 provide sufficient Landau damping to stabilise the instability driven by the crab cavity amplitude feedback
- Scaling down the beam-beam force by a factor 10 remains sufficient indicating reasonably good margins

CC feedback with beam-beam (X. Buffat, et al. @ WP2 meeting 21.03.2023)

- For the specific configuration studied, beambeam interactions at IPs 1 and 5 provide sufficient Landau damping to stabilise the instability driven by the crab cavity amplitude feedback
- Scaling down the beam-beam force by a factor 10 remains sufficient indicating reasonably good margins

→ nevertheless the explored parameter space is ridiculously small (Bunch intensity, number of bunches, apparent Q, chromaticity, amplitud feedback gain, ADT Gain, bunch length, crossing/crab angles, β^* , combination with the machine impedance)

12

14